A Partition of Unity Boundary Element Method for Fracture and Fatigue Analysis

断裂与疲劳分析的统一边界元法的划分

基本信息

  • 批准号:
    EP/E012310/1
  • 负责人:
  • 金额:
    $ 10.18万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

The aim of this proposal is to produce a novel computational modelling algorithm for the analysis of engineering components containing cracks. A number of recent, high profile accidents clearly demonstrate that when fracture failures occur due to cracking, they often do so suddenly, catastrophically and without warning. The process of cracks growing to a critical size under cyclical loading is termed fatigue. The work proposes a new method of simulating both fracture mechanics and fatigue crack growth.Simulations in fracture and fatigue are based around the determination of the stresses and displacements in the material in the vicinity of the crack. There are well established computational methods of finding this type of solution, but in the presence of cracks the traditional approaches based on conventional 'finite element' and 'boundary element' methods can become cumbersome and inefficient. In recent years, a number of variants of these techniques have been proposed to overcome some of these difficulties.The proposed work involves the combination of two such strategies: the 'Dual Boundary Element Method' (DBEM) and the 'Partition of Unity Method' (PUM). The DBEM overcomes the need for a very refined computational model, though there are some drawbacks making the method more difficult to implement. The PUM is expected to allow for further reductions in the required model refinement.The PUM is based on the inclusion in our approximate model of a set of functions derived from the theoretical behaviour of the materials locally at the crack tip. This has been successfully used with the finite element method for fracture mechanics. However, our own group in Durham has achieved great success with the PUM in a boundary element algorithm for wave propagation simulation. Here we have found up to 8 orders of magnitude reduction in errors over conventional boundary elements and allows for a considerable reduction in the size of the problem.Since the PUM seems well suited to a boundary element implementation, and boundary elements are well known for their suitability for crack problems, we anticipate this project to have a good probability of success, and could have a significant impact on fracture and fatigue simulations in mechanical and aerospace engineering.
该建议的目的是产生一种新的计算建模算法,用于分析含有裂纹的工程部件。最近发生的一些引人注目的事故清楚地表明,当断裂失效由于开裂而发生时,它们通常是突然的、灾难性的并且没有警告。在循环载荷下裂纹扩展到临界尺寸的过程称为疲劳。本文提出了一种新的断裂力学和疲劳裂纹扩展模拟方法,断裂和疲劳的模拟都是基于裂纹附近材料的应力和位移的确定。有完善的计算方法找到这种类型的解决方案,但在裂纹的存在下,传统的方法,传统的“有限元”和“边界元”的方法,可以变得繁琐和效率低下。近年来,为了克服这些困难,人们提出了一些新的边界元方法,其中包括“对偶边界元法”(DBEM)和“单位分解法”(PUM)。DBEM克服了对非常精细的计算模型的需要,尽管存在一些缺点使得该方法更难以实现。PUM预计将允许进一步减少所需的模型refinement.The PUM是基于在我们的近似模型中包含一组来自局部裂纹尖端的材料的理论行为的函数。这已成功地用于断裂力学的有限元法。然而,我们自己的小组在达勒姆已经取得了巨大的成功与PUM在边界元算法的波传播模拟。在这里,我们发现,与传统的边界元相比,误差减少了8个数量级,并允许相当大的问题规模的减少。由于PUM似乎非常适合边界元的实现,边界元是众所周知的,其适用于裂纹问题,我们预计这个项目有很好的成功概率。并且可能对机械和航空航天工程中的断裂和疲劳模拟产生重大影响。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enrichment of the Boundary Element Method for fracture and fatigue analysis
断裂和疲劳分析边界元法的丰富
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R Simpson
  • 通讯作者:
    R Simpson
Evaluation of J1 and J2 integrals for curved cracks using an enriched boundary element method
  • DOI:
    10.1016/j.engfracmech.2010.12.006
  • 发表时间:
    2011-03
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    R. Simpson;J. Trevelyan
  • 通讯作者:
    R. Simpson;J. Trevelyan
A Partition of Unity Boundary Element Method for fracture and fatigue analysis
断裂与疲劳分析的统一边界元法的划分
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R Simpson
  • 通讯作者:
    R Simpson
A partition of unity enriched dual boundary element method for accurate computations in fracture mechanics
Enrichment of the Boundary Element Method through the Partition of Unity Method for Mode I and II fracture analysis
通过统一法划分 I 型和 II 型断裂分析丰富边界元法
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R Simpson
  • 通讯作者:
    R Simpson
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jon Trevelyan其他文献

A well simulator for homogeneous reservoirs based on formulations of the isogeometric boundary element method
Fatigue growth modelling of three-dimensional cracks with the extended isogeometric boundary element method
基于扩展等几何边界元法的三维裂纹疲劳扩展建模
  • DOI:
    10.1016/j.enganabound.2025.106263
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Matheus Rocha;Jon Trevelyan;Edson Denner Leonel
  • 通讯作者:
    Edson Denner Leonel

Jon Trevelyan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jon Trevelyan', 18)}}的其他基金

WORKSHOP: The future for wave element methods
研讨会:波元方法的未来
  • 批准号:
    EP/H016252/1
  • 财政年份:
    2009
  • 资助金额:
    $ 10.18万
  • 项目类别:
    Research Grant
Technologies to deliver real-time interactivity for virtual reality in stress analysis of solids
在固体应力分析中为虚拟现实提供实时交互的技术
  • 批准号:
    EP/H000046/1
  • 财政年份:
    2009
  • 资助金额:
    $ 10.18万
  • 项目类别:
    Research Grant

相似国自然基金

基于流体力学模型和Unity引擎的城市交通流仿真平台
  • 批准号:
    11672348
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Instruments of Unity: The Many Ways of Being One
团结的工具:合一的多种方式
  • 批准号:
    EP/Y014278/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.18万
  • 项目类别:
    Research Grant
Medieval Vernacular Bibles as Unity, Diversity and Conflict
中世纪白话圣经的统一性、多样性和冲突
  • 批准号:
    AH/Y007573/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.18万
  • 项目类别:
    Research Grant
Unity Gaming Software Development Course
Unity 游戏软件开发课程
  • 批准号:
    10068672
  • 财政年份:
    2023
  • 资助金额:
    $ 10.18万
  • 项目类别:
    Collaborative R&D
Unity through diversity and transformation in A la Recherche: A Study of Proust through the lens of Catherine Malabou
《追忆似水年华:通过凯瑟琳·马拉布的镜头对普鲁斯特的研究》中通过多样性和变革实现统一
  • 批准号:
    2733024
  • 财政年份:
    2022
  • 资助金额:
    $ 10.18万
  • 项目类别:
    Studentship
'An indissoluble unity': considering the relationship between outward influences and the design of Birmingham's radical newspapers 1815-36
“牢不可破的团结”:考虑外部影响与伯明翰激进报纸设计之间的关系 1815-36
  • 批准号:
    2750267
  • 财政年份:
    2022
  • 资助金额:
    $ 10.18万
  • 项目类别:
    Studentship
A reference file theoretic approach to the interpretive diversity and formal unity of existential and copular sentences
存在句和共行句的解释多样性和形式统一的参考文件理论方法
  • 批准号:
    22K00553
  • 财政年份:
    2022
  • 资助金额:
    $ 10.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
symbols of Unity: Pride Flags and the Development of LGBTQ+ Identities in London, Berlin, and New York after Stonewall.
团结的象征:石墙事件之后伦敦、柏林和纽约的骄傲旗帜和 LGBTQ 身份的发展。
  • 批准号:
    2763962
  • 财政年份:
    2022
  • 资助金额:
    $ 10.18万
  • 项目类别:
    Studentship
Approaches to modelling agricultural erosion in Unity game engine
在 Unity 游戏引擎中模拟农业侵蚀的方法
  • 批准号:
    562706-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 10.18万
  • 项目类别:
    University Undergraduate Student Research Awards
Development and evaluation of an applause and hand-clapping sound feedback system to improve a sense of unity on remote live viewing
提高远程直播观看团结感的掌声、拍手声反馈系统的开发与评估
  • 批准号:
    21K17869
  • 财政年份:
    2021
  • 资助金额:
    $ 10.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of Visualization framework and AR Application on Unity with point data reduction technique
利用点数据缩减技术在Unity上开发可视化框架和AR应用
  • 批准号:
    21K11916
  • 财政年份:
    2021
  • 资助金额:
    $ 10.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了