Renaissance Germanium

文艺复兴时期的锗

基本信息

  • 批准号:
    EP/F031408/1
  • 负责人:
  • 金额:
    $ 130.08万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

Germanium, in at the birth of the electronics revolution, is experiencing a renaissance as a semiconductor material - possibly even rivalling silicon, and is attracting huge interest as the silicon end-game hots up. It is perceived, audaciously but by many, as a potential candidate to maintain silicon-like technology and associated devices well beyond the envisaged end of silicon development (around 2020) and also take the technology into exciting new areas and performance regimes. This proposal sets out to explore some of the intriguing aspects and consequences of the fundamental electronic structure of Ge not previously examined. There are good theoretical arguments to suggest that some critical performance parameters can be dramatically enhanced if carriers travel in non-conventional crystallographic directions and when the germanium is under strain. We will investigate how these new environments affect the velocity/mobility and effective mass of the carriers (electrons and holes) and the processes that impede their motion (scattering).The project will be conducted by three UK university groups uniquely positioned to undertake this research and with international reputations for epitaxial growth of strained Ge (Warwick), transmission electron microscopy (TEM) for structural characterization on the nanoscale (Sheffield) and carrier transport modelling (Glasgow). The industrial standard CVD growth system at Warwick puts us in a unique position to contribute to this field of research, with good prospects of the high quality Ge structures being available early in the programme. Participation of IMEC, the leading European nano-processing laboratory, will give us unparalleled access to tools not available in the UK. Our intellectual property will be fully protected and could be exploited by numerous companies in the UK.The principal objective is to study 2D carrier transport in these largely untried orientations and to look for significant enhancements in carrier mobility compared to the conventional (100) orientation. Similar investigations are currently underway in silicon and it is opportune to now explore this in Ge. It is particularly timely in the light of IMEC's recent progress in Ge device fabrication using essentially silicon processing techniques.The programme consists of three integrated workpackages:WP1 - Growth and processing of strained Ge channel structures: Epitaxial processes will be developed, structural characterisation performed including high resolution TEM, and simple structures processed for electrical measurement.WP2 - Modulation doped buried channel structures: Initial assessment and screening of orientation and strain influences on hole and electron transport, quickly targeting optimised structures and specifically avoiding any perturbing effects of processing that may be detrimental to electron transport. Results from the measurements will be used by the Glasgow Device Modelling Group to develop/refine basic scattering and mobility models for this materials system and provide pointers to final choice of structures.WP3 - Surface-channel device structures: Structures containing a gate electrode to modulate the carrier population and make it an active device. The gate is separated from the channel by a very thin layer of a new (high-k) dielectric material, which will also scatter the carriers. Transport measurements down to very low temperatures will allow us to appraise the full device potential offered by Ge.By the end of the project we would expect to have a thorough understanding of the practical and theoretical aspects of 2D carrier transport in the full matrix of Ge surface orientations, channel directions and strain. Such knowledge can then be used to great advantage in helping realise new generations of highly performing devices that are needed in the nanoelectronics and the futuristic spintronics era.
锗,在电子革命的诞生,正在经历一个复兴作为一种半导体材料-甚至可能与硅相媲美,并吸引了巨大的兴趣,因为硅的最终游戏热起来。它被许多人大胆地认为是一种潜在的候选者,可以在设想的硅开发结束(2020年左右)之后保持类似硅的技术和相关设备,并将该技术带入令人兴奋的新领域和性能体系。这项建议旨在探索一些有趣的方面和后果的基本电子结构的锗以前没有检查。有很好的理论论据表明,如果载流子在非常规的晶体学方向上行进,并且当锗处于应变下时,一些关键的性能参数可以显著增强。我们将研究这些新环境如何影响载流子的速度/迁移率和有效质量(电子和空穴)以及阻碍它们运动的过程该项目将由三个英国大学小组进行,这三个大学小组具有独特的地位来进行这项研究,并在应变Ge的外延生长方面享有国际声誉(沃里克),透射电子显微镜(TEM)用于纳米级结构表征(谢菲尔德)和载流子传输建模(格拉斯哥)。沃里克的工业标准CVD生长系统使我们处于一个独特的位置,为这一研究领域做出贡献,在项目早期就有高质量Ge结构的良好前景。IMEC是欧洲领先的纳米加工实验室,它的参与将使我们能够获得在英国无法获得的工具。我们的知识产权将得到充分的保护,并可以利用许多公司在英国。主要目标是研究二维载流子输运在这些很大程度上未经尝试的方向,并寻找显着增强载流子迁移率相比,传统的(100)方向。类似的研究目前正在硅中进行,现在在Ge中探索这一点是合适的。鉴于IMEC最近在Ge器件制造方面取得的进展,该计划包括三个综合工作包:WP 1-应变Ge沟道结构的生长和加工:将开发外延工艺,进行结构表征,包括高分辨率TEM,以及用于电气测量的简单结构。WP 2-调制掺杂掩埋沟道结构:初步评估和筛选方向和应变对空穴和电子传输的影响,快速定位优化结构,特别是避免任何可能对电子传输有害的加工干扰效应。测量结果将被格拉斯哥器件建模小组用于开发/改进该材料系统的基本散射和迁移率模型,并为最终选择结构提供指针。WP 3-表面沟道器件结构:包含栅极电极的结构,用于调制载流子数量并使其成为有源器件。栅极与沟道由一层非常薄的新(高k)电介质材料隔开,该材料也会散射载流子。运输测量下降到非常低的温度将使我们能够评估由Ge提供的全部设备潜力。通过该项目的结束,我们将期望有一个全面的理解的实际和理论方面的二维载流子输运在Ge表面取向,通道方向和应变的全矩阵。这样的知识可以被用来帮助实现纳米电子学和未来自旋电子学时代所需的新一代高性能器件。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermal Stability of Thin Compressively Strained Ge Surface Channels Grown on Relaxed Si 0.2 Ge 0.8 Reverse-Graded Buffers
在松弛 Si 0.2 Ge 0.8 反梯度缓冲层上生长的薄压缩应变 Ge 表面通道的热稳定性
Nanoscale CMOS: Innovative Materials, Modeling and Characterization
纳米级 CMOS:创新材料、建模和表征
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Balestra, Francis
  • 通讯作者:
    Balestra, Francis
Ultra-High Hall Mobility (1 x 106 cm2V-1S-1) in a Two-Dimensional Hole Gas in a Strained Germanium Quantum Well Grown by Reduced Pressure CVD
减压 CVD 生长的应变锗量子井中二维空穴气体中的超高霍尔迁移率 (1 x 106 cm2V-1S-1)
  • DOI:
    10.1109/istdm.2012.6222451
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dobbie A
  • 通讯作者:
    Dobbie A
Growth of Smooth, Low-Defect Germanium Layers on (111) Silicon via an Intermediate Islanding Process
通过中间孤岛工艺在 (111) 硅上生长光滑、低缺陷的锗层
  • DOI:
    10.1143/apex.5.071301
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Dobbie A
  • 通讯作者:
    Dobbie A
Thermally grown GeO<inf>2</inf> on epitaxial Ge on Si(001) substrate
Si(001) 衬底上外延 Ge 上热生长的 GeO<inf>2</inf>
  • DOI:
    10.1109/ulis.2013.6523510
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Casteleiro C
  • 通讯作者:
    Casteleiro C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Leadley其他文献

David Leadley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Leadley', 18)}}的其他基金

EPSRC Core Equipment Award 2022: University of Warwick
2022 年 EPSRC 核心设备奖:华威大学
  • 批准号:
    EP/X034836/1
  • 财政年份:
    2023
  • 资助金额:
    $ 130.08万
  • 项目类别:
    Research Grant
Spintronic device physics in Si/Ge Heterostructures.
硅/锗异质结构中的自旋电子器件物理。
  • 批准号:
    EP/J003263/1
  • 财政年份:
    2012
  • 资助金额:
    $ 130.08万
  • 项目类别:
    Research Grant
Creating Silicon Based Platforms for New Technologies
为新技术创建基于硅的平台
  • 批准号:
    EP/J001074/1
  • 财政年份:
    2012
  • 资助金额:
    $ 130.08万
  • 项目类别:
    Research Grant
Near infrared single photon detection using Ge-on-Si heterostructures
使用 Ge-on-Si 异质结构进行近红外单光子检测
  • 批准号:
    EP/I000011/1
  • 财政年份:
    2010
  • 资助金额:
    $ 130.08万
  • 项目类别:
    Research Grant
Room Temperature Terahertz Quantum Cascade Lasers on Silicon Substrates
硅衬底上的室温太赫兹量子级联激光器
  • 批准号:
    EP/H025294/1
  • 财政年份:
    2010
  • 资助金额:
    $ 130.08万
  • 项目类别:
    Research Grant
Silicon Resonant Tunnelling Diodes and Circuits
硅谐振隧道二极管和电路
  • 批准号:
    EP/G041229/1
  • 财政年份:
    2009
  • 资助金额:
    $ 130.08万
  • 项目类别:
    Research Grant
UK Silicon Photonics
英国硅光子学
  • 批准号:
    EP/E065317/1
  • 财政年份:
    2008
  • 资助金额:
    $ 130.08万
  • 项目类别:
    Research Grant
On-Chip milliKelvin Electronic Refrigerator for Astronomical and Quantum Device Applications
适用于天文和量子设备应用的片上毫开尔文电子制冷机
  • 批准号:
    EP/F040784/1
  • 财政年份:
    2008
  • 资助金额:
    $ 130.08万
  • 项目类别:
    Research Grant
Ultimate Control of Strain Relaxation Processes in SiGe Layers
SiGe 层应变弛豫过程的最终控制
  • 批准号:
    EP/D034485/1
  • 财政年份:
    2006
  • 资助金额:
    $ 130.08万
  • 项目类别:
    Research Grant

相似海外基金

EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
  • 批准号:
    EP/X039889/1
  • 财政年份:
    2024
  • 资助金额:
    $ 130.08万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
  • 批准号:
    EP/X040380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 130.08万
  • 项目类别:
    Research Grant
Study on p-type doping of ultra wide bandgap rutile-structured germanium oxide
超宽带隙金红石结构氧化锗的p型掺杂研究
  • 批准号:
    24K17312
  • 财政年份:
    2024
  • 资助金额:
    $ 130.08万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线
  • 批准号:
    EP/X039757/1
  • 财政年份:
    2023
  • 资助金额:
    $ 130.08万
  • 项目类别:
    Research Grant
Development of Germanium Ring-Contact Detectors for LEGEND-1000
开发用于 LEGEND-1000 的锗环接触探测器
  • 批准号:
    2310027
  • 财政年份:
    2023
  • 资助金额:
    $ 130.08万
  • 项目类别:
    Standard Grant
FuSe-TG: Co-Design of Germanium Oxide-based Semiconductors from Deposition to Devices
FuSe-TG:氧化锗基半导体从沉积到器件的协同设计
  • 批准号:
    2235208
  • 财政年份:
    2023
  • 资助金额:
    $ 130.08万
  • 项目类别:
    Standard Grant
Point contact germanium detectors for rare event searches
用于罕见事件搜索的点接触锗探测器
  • 批准号:
    SAPIN-2017-00023
  • 财政年份:
    2022
  • 资助金额:
    $ 130.08万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Low energy electron recoil and nuclear recoil calibrations of a cryogenic germanium detector
低温锗探测器的低能电子反冲和核反冲校准
  • 批准号:
    572611-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 130.08万
  • 项目类别:
    University Undergraduate Student Research Awards
Ionization Yield Measurement for SuperCDMS Germanium Detectors
SuperCDMS 锗探测器的电离产额测量
  • 批准号:
    SAPPJ-2022-00034
  • 财政年份:
    2022
  • 资助金额:
    $ 130.08万
  • 项目类别:
    Subatomic Physics Envelope - Project
RII Track-4: Research and Development of Ring-Contact Germanium Detectors
RII Track-4:环接触锗探测器的研究与开发
  • 批准号:
    2132003
  • 财政年份:
    2022
  • 资助金额:
    $ 130.08万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了