Generation of Ethanol Response Gene Resource by Large-Scale Data Integration
通过大规模数据集成生成乙醇反应基因资源
基本信息
- 批准号:7530832
- 负责人:
- 金额:$ 21.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-10 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlcoholismAlgorithmsAnimal ModelBehaviorBehavioralBioinformaticsCandidate Disease GeneCommunitiesComparative Genomic AnalysisDNA Microarray ChipDNA Microarray formatDataData AnalysesData CollectionData SetDatabasesEthanolFutureGene ExpressionGenerationsGenesGeneticGenetic RiskGenomicsGenotypeGoalsHumanIndividualInstitutesInterventionInvestigationLinkLocationMethodsMolecularMusNational Institute on Alcohol Abuse and AlcoholismNumbersOnline SystemsOntologyOrganismPathway AnalysisPatternPublic HealthQuantitative Trait LociRattusResearchResearch PersonnelResourcesSamplingScanningSchizophreniaScoreScreening procedureStatistical Data InterpretationSubgroupSusceptibility GeneSystemTechnologyUnited States National Institutes of HealthUpdatealcohol responsecomparativecomputer programdata integrationdata managementdesignflygene functiongenome wide association studyinterestnovelopen sourceprototypetext searchingtooltraittrenduser-friendlyweb interface
项目摘要
DESCRIPTION (provided by applicant): Over the last 10-15 years rapid progress has been made in the study of ethanol related traits including alcoholism and behavioral responses to ethanol in both humans and animal models. Refined genetic strategies and high-throughput molecular technologies such as large-scale genotyping and DNA microarrays have identified a relatively large number of chromosomal locations and candidate genes contributing to the genetic risk for alcoholism and ethanol response behaviors. At present, integrating and making the combined wealth of results easily accessible and interpretable presents significant challenges for researchers. In this application, we propose to construct such a unique and important ethanol response gene resource (ERGR). We will first collect and curate all the available data sets for ethanol response genes including those generated by the groups at VCU and publicly available. Examples of these internal and external data include human linkage scan and association studies, mouse ethanol QTL, microarray data, high throughput literature searches, and candidate genes in other organisms (e.g. rat, fly, worm). The collected data will be integrated via a data management system and updated routinely by computer programs. Many analyses will be performed for the identification of susceptibility genes and their features, including comparative genomics, gene network, Gene Ontology term, and gene expression analyses. We will also develop scoring algorithms for prioritizing candidate genes and implement tools for customization of gene prioritization. Finally, we will design and implement a user-friendly web-based platform. This platform will provide (1) simultaneous access to the data collected and annotated and to certain public genomic databases and (2) tools for statistical analysis and data presentation. The overall goal is to provide a comprehensive ethanol response gene resource to NIAAA research community and to facilitate understanding the mechanism(s) of action for individual genes in alcoholism and identify potential targets for novel new interventions in alcoholism. Public Health Relevance: The proposed project will collect, curate, and analyze all the available data sets for ethanol response genes and prioritize the candidate genes for future investigation. A user-friendly web-based ethanol response gene database system will be constructed for NIAAA research community.
描述(由申请人提供):过去 10-15 年,乙醇相关性状的研究取得了快速进展,包括人类和动物模型中的酗酒和对乙醇的行为反应。精细的遗传策略和高通量分子技术(例如大规模基因分型和DNA微阵列)已经确定了相对大量的染色体位置和候选基因,这些染色体位置和候选基因有助于酗酒和乙醇反应行为的遗传风险。目前,整合大量的结果并使其易于获取和解释给研究人员带来了巨大的挑战。在本申请中,我们建议构建这样一个独特且重要的乙醇反应基因资源(ERGR)。我们将首先收集和整理乙醇反应基因的所有可用数据集,包括由 VCU 小组生成的和公开的数据集。这些内部和外部数据的例子包括人类连锁扫描和关联研究、小鼠乙醇QTL、微阵列数据、高通量文献检索以及其他生物体(例如大鼠、苍蝇、蠕虫)中的候选基因。收集到的数据将通过数据管理系统进行整合,并通过计算机程序定期更新。将进行许多分析来鉴定易感基因及其特征,包括比较基因组学、基因网络、基因本体术语和基因表达分析。我们还将开发用于对候选基因进行优先级排序的评分算法,并实现用于定制基因优先级的工具。最后,我们将设计并实现一个用户友好的基于网络的平台。该平台将提供(1)同时访问收集和注释的数据以及某些公共基因组数据库和(2)用于统计分析和数据呈现的工具。总体目标是向 NIAAA 研究界提供全面的乙醇反应基因资源,促进了解酗酒中个体基因的作用机制,并确定酗酒新干预措施的潜在目标。公共卫生相关性:拟议项目将收集、整理和分析乙醇反应基因的所有可用数据集,并优先考虑候选基因以供未来研究。将为 NIAAA 研究界构建一个用户友好的基于网络的乙醇反应基因数据库系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhongming Zhao其他文献
Zhongming Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhongming Zhao', 18)}}的其他基金
Constructing A Transcriptomic Atlas of Retrotransposon in Alzheimer's Disease
构建阿尔茨海默病逆转录转座子转录组图谱
- 批准号:
10431366 - 财政年份:2022
- 资助金额:
$ 21.42万 - 项目类别:
Deep learning methods to predict the function of genetic variants in orofacial clefts
深度学习方法预测口颌裂遗传变异的功能
- 批准号:
9764346 - 财政年份:2018
- 资助金额:
$ 21.42万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10318084 - 财政年份:2017
- 资助金额:
$ 21.42万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10640868 - 财政年份:2017
- 资助金额:
$ 21.42万 - 项目类别:
Predicting Phenotype by Using Transcriptomic Alteration as Endophenotype
使用转录组改变作为内表型预测表型
- 批准号:
9980998 - 财政年份:2017
- 资助金额:
$ 21.42万 - 项目类别:
Transforming dbGaP genetic and genomic data to FAIR-ready by artificial intelligence and machine learning algorithms
通过人工智能和机器学习算法将 dbGaP 遗传和基因组数据转变为 FAIR-ready
- 批准号:
10842954 - 财政年份:2017
- 资助金额:
$ 21.42万 - 项目类别:
Predicting Phenotype by Deep Learning Heterogeneous Multi-Omics Data
通过深度学习异构多组学数据预测表型
- 批准号:
10449376 - 财政年份:2017
- 资助金额:
$ 21.42万 - 项目类别:
Predicting Phenotype by Using Transcriptomic Alteration as Endophenotype
使用转录组改变作为内表型预测表型
- 批准号:
9750105 - 财政年份:2017
- 资助金额:
$ 21.42万 - 项目类别:
Mapping the Genetic Architecture of Complex Disease via RNA-seq and GWAS
通过 RNA-seq 和 GWAS 绘制复杂疾病的遗传结构
- 批准号:
9212507 - 财政年份:2016
- 资助金额:
$ 21.42万 - 项目类别:
MicroRNA and Transcription Factor Co-regulation in Cancer
癌症中的 MicroRNA 和转录因子共同调控
- 批准号:
9329385 - 财政年份:2016
- 资助金额:
$ 21.42万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 21.42万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 21.42万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 21.42万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 21.42万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 21.42万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 21.42万 - 项目类别:
Research Grant














{{item.name}}会员




