Local flood forecasting capability for fluvial and estuarine floods: Use of GridStix for constraining uncertainty in predictive models
河流和河口洪水的本地洪水预报能力:使用 GridStix 来约束预测模型中的不确定性
基本信息
- 批准号:NE/E002102/1
- 负责人:
- 金额:$ 9.85万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to make use of lots of networked GridStix depth sensors to improve predictions of flood inundation and water level elevation at important locations with a view to improving flood warning capabilities. The project involves improving the software that links the sensors and distributed computing resources. This will allow distributed hydraulic routing models to be run, with the possibility of reducing the uncertainty in their predictions by using the sensor information in real-time. Since the GridStix also have on-board computing capabilities there is also a possibility of building a cheap local forecasting system for specific points at risk of flooding. The science questions involved include how best to make the netwroking robust, how best to constrain the uncertainty in flood routing models and improve their predictions, and how best to implement the local flood forecasting models. The research will be implemented on the River Ribble, subject to regular fluvial flooding, and the tidal system of the River Dee Estuary. The research represents a collaboration between Lancaster and Bristol Universities, the Proudman Oceanographic Laboratory and the Environment Agency.
该项目旨在利用大量联网的GridStix深度传感器,提高对重要地点洪水泛滥和水位高度的预测,以提高洪水预警能力。该项目包括改进连接传感器和分布式计算资源的软件。这将允许分布式液压路径模型运行,并有可能通过实时使用传感器信息来减少预测中的不确定性。由于GridStix也有车载计算能力,因此也有可能为面临洪水风险的特定地点建立一个廉价的本地预报系统。所涉及的科学问题包括如何最好地使网络健壮,如何最好地约束洪水路径模型中的不确定性并改进其预测,以及如何最好地实现局部洪水预测模型。这项研究将在经常发生河流洪水的里布尔河和迪河口的潮汐系统上进行。这项研究是兰开斯特大学和布里斯托尔大学、普罗德曼海洋学实验室和环境局合作进行的。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards the provision of site specific flood warnings using wireless sensor networks
- DOI:10.1002/met.130
- 发表时间:2009-03
- 期刊:
- 影响因子:2.7
- 作者:Paul Smith;D. Hughes;K. Beven;P. Cross;W. Tych;G. Coulson;G. Blair
- 通讯作者:Paul Smith;D. Hughes;K. Beven;P. Cross;W. Tych;G. Coulson;G. Blair
Community-based early warning systems for flood risk mitigation in Nepal
- DOI:10.5194/nhess-17-423-2017
- 发表时间:2017-03-20
- 期刊:
- 影响因子:4.6
- 作者:Smith, Paul J.;Brown, Sarah;Dugar, Sumit
- 通讯作者:Dugar, Sumit
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keith Beven其他文献
Estimating phosphorus delivery with its mitigation measures from soil to stream using fuzzy rules
使用模糊规则估算从土壤到溪流的磷输送及其缓解措施
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Ting Zhang;T. Page;A. Heathwaite;Keith Beven;D. M. Oliver;P. Haygarth - 通讯作者:
P. Haygarth
On the future of hydroecological models of everywhere
关于无处不在的水生态模型的未来
- DOI:
10.1016/j.envsoft.2025.106431 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:4.600
- 作者:
Keith Beven - 通讯作者:
Keith Beven
Evaluation of hydrological models at gauged and ungauged basins using machine learning-based limits-of-acceptability and hydrological signatures
使用基于机器学习的可接受性限度和水文特征对实测和未实测流域水文模型的评估
- DOI:
10.1016/j.jhydrol.2024.131774 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:6.300
- 作者:
Abhinav Gupta;Mohamed M. Hantush;Rao S. Govindaraju;Keith Beven - 通讯作者:
Keith Beven
Uncertainty in the estimation of critical loads: A practical methodology
- DOI:
10.1007/bf02047040 - 发表时间:
1997-09-01 - 期刊:
- 影响因子:3.000
- 作者:
Susan K. Zak;Keith Beven;Brian Reynolds - 通讯作者:
Brian Reynolds
UPH Problem 20 – reducing uncertainty in model prediction: a model invalidation approach based on a Turing-like test
UPH 问题 20 – 减少模型预测的不确定性:基于类图灵测试的模型失效方法
- DOI:
10.5194/piahs-385-129-2024 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Keith Beven;Trevor Page;Paul Smith;A. Kretzschmar;B. Hankin;Nick Chappell - 通讯作者:
Nick Chappell
Keith Beven的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keith Beven', 18)}}的其他基金
Real-time forecasting of algal blooms in reservoirs
水库藻华实时预报
- 批准号:
NE/N004817/1 - 财政年份:2015
- 资助金额:
$ 9.85万 - 项目类别:
Research Grant
The Consortium on Risk in the Environment: Diagnostics, Integration, Benchmarking, Learning and Elicitation (CREDIBLE)
环境风险联盟:诊断、整合、基准测试、学习和启发(CREDIBLE)
- 批准号:
NE/J017299/1 - 财政年份:2013
- 资助金额:
$ 9.85万 - 项目类别:
Research Grant
A United Kingdom Lake Ecological Observatory Network
英国湖泊生态观测站网络
- 批准号:
NE/I007318/1 - 财政年份:2011
- 资助金额:
$ 9.85万 - 项目类别:
Research Grant
A new grid-free, hysteretic, and scale-dependent approach to modelling hillslope hydrology
一种新的无网格、滞后和尺度相关的山坡水文建模方法
- 批准号:
NE/G017123/1 - 财政年份:2010
- 资助金额:
$ 9.85万 - 项目类别:
Research Grant
Catchment change network (CCN): A professional development platform for decision-making for adaptation and uncertain environmental change
流域变化网络(CCN):适应和不确定环境变化决策的专业开发平台
- 批准号:
NE/G008787/1 - 财政年份:2009
- 资助金额:
$ 9.85万 - 项目类别:
Research Grant
Local flood forecasting capability for fluvial and estuarine floods: Use of GridStix for constraining uncertainty in predictive models
河流和河口洪水的本地洪水预报能力:使用 GridStix 来约束预测模型中的不确定性
- 批准号:
NE/E002331/1 - 财政年份:2008
- 资助金额:
$ 9.85万 - 项目类别:
Research Grant
Local flood forecasting capability for fluvial and estuarine floods: Use of GridStix for constraining uncertainty in predictive models
河流和河口洪水的本地洪水预报能力:使用 GridStix 来约束预测模型中的不确定性
- 批准号:
NE/E002439/1 - 财政年份:2007
- 资助金额:
$ 9.85万 - 项目类别:
Research Grant
相似海外基金
Towards the next generation probabilistic flood forecasting system for the UK
英国下一代概率洪水预报系统
- 批准号:
2907694 - 财政年份:2024
- 资助金额:
$ 9.85万 - 项目类别:
Studentship
Towards an integrated data-driven flood risk forecasting framework
建立综合数据驱动的洪水风险预测框架
- 批准号:
547587-2020 - 财政年份:2022
- 资助金额:
$ 9.85万 - 项目类别:
Postgraduate Scholarships - Doctoral
Development of an improved hourly ensemble streamflow forecasting system for flood forecasting on small watersheds
开发改进的每小时集合水流预报系统,用于小流域洪水预报
- 批准号:
560780-2020 - 财政年份:2022
- 资助金额:
$ 9.85万 - 项目类别:
Alliance Grants
Development of Hybrid Flood Forecasting System based on Rainfall Information from Machine Learning Algorithm
基于机器学习算法的降雨信息的混合洪水预报系统开发
- 批准号:
22K04332 - 财政年份:2022
- 资助金额:
$ 9.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ice-jam flood forecasting
冰塞洪水预报
- 批准号:
RGPIN-2021-03570 - 财政年份:2022
- 资助金额:
$ 9.85万 - 项目类别:
Discovery Grants Program - Individual
Towards an integrated data-driven flood risk forecasting framework
建立综合数据驱动的洪水风险预测框架
- 批准号:
547587-2020 - 财政年份:2021
- 资助金额:
$ 9.85万 - 项目类别:
Postgraduate Scholarships - Doctoral
Development of high resolution global-flood forecasting system with long lead time
开发周期长的高分辨率全球洪水预报系统
- 批准号:
21K14386 - 财政年份:2021
- 资助金额:
$ 9.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ice-jam flood forecasting
冰塞洪水预报
- 批准号:
RGPIN-2021-03570 - 财政年份:2021
- 资助金额:
$ 9.85万 - 项目类别:
Discovery Grants Program - Individual
Flood forecasting on the mountainous river basin by using the most advanced Multi-parameter radars
利用最先进的多参数雷达进行山区流域洪水预报
- 批准号:
21J15249 - 财政年份:2021
- 资助金额:
$ 9.85万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Integrated Forecasting System of Flood Inundation and Agricultural Damage in the Lower Mekong Basin
湄公河下游流域洪水淹没和农业损失综合预报系统
- 批准号:
21F21071 - 财政年份:2021
- 资助金额:
$ 9.85万 - 项目类别:
Grant-in-Aid for JSPS Fellows