Accessible Handling of Misclassified or Missing Binary Variables in CER Studies
CER 研究中错误分类或缺失的二元变量的可访问处理
基本信息
- 批准号:8037394
- 负责人:
- 金额:$ 44.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-24 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAddressBacterial VaginosisBiological AssayClinicalCohort StudiesCommunitiesComputer softwareDataData AnalysesData CollectionData SourcesDiagnosisDiagnostic ProcedureEpidemiologic StudiesEpidemiologyEquationFosteringFundus photographyGoalsHIVIntentionInvestigationLiteratureLogistic RegressionsMeasuresMethodsModelingMotivationOutcomeParticipantProcessResearchResearch DesignResearch PersonnelResource AllocationSamplingSeriesStatistical MethodsTechniquesTimeValidationVisitabstractinganalytical methodbasecase controlcombatcomparative effectivenesscostdesigneffectiveness researchinterestprogramsresearch studyuser-friendly
项目摘要
DESCRIPTION (provided by applicant): Common but often overlooked threats to the validity of comparative effectiveness research (CER) studies include the misclassification or missingness of binary variables that are crucial to the ultimate analysis of the data. These variables potentially include the outcome of interest in standard or repeated measures logistic regression models, the factor (exposure) of interest, or an important confounder of the association under study. This proposal seeks to facilitate the investigation of the resulting biases to which a given CER analysis may be subject, and to provide study design-based remedial measures via which validity can be restored. The focus is upon statistical methods for conducting sensitivity analyses, as well as methods designed to make efficient use of supplemental data sources. The latter include validation data (in the case of misclassification), and so-called reassessment data (in the case of potentially informative missingness). A primary consideration throughout includes the incorporation of subject-specific covariates into the model of interest, as well as into models for the underlying misclassification or missingness process. Another primary goal is to establish a relatively consistent likelihood-based framework for all proposed analyses incorporating supplemental data, and to provide user-friendly programs utilizing common statistical software in order to make the methods broadly and readily accessible to those conducting CER. While not limited to specific applications, the proposed research draws motivation from and lends itself to illustration via two real-world studies. The first is the HIV Epidemiology Research Study (HERS), an observational cohort study in which the binary diagnosis of bacterial vaginosis was made at repeated visits via both error-prone and sophisticated assay techniques. The second is an emergency department-based ophthalmologic study in which non-dilated ocular fundus photography will be used for diagnosing serious ocular conditions, and will be compared against existing standard diagnostic methods. Both studies involve internal validation data to facilitate corrections for misclassification based on a fallible diagnostic method, and both are also subject to missing outcome and/or predictor data.
PUBLIC HEALTH RELEVANCE: The goal of this project is to provide statistical methods to aid comparative effectiveness research (CER) investigators with common problems encountered in data analysis. The problems upon which the project focuses come about when binary ("yes/no") data are subject to being incorrectly measured (misclassified), or when they are sometimes not observed (missing) for reasons that might relate to information about subjects in the study. The intention is to provide CER investigators with methods that are relatively easy to use, yet effective and powerful for combating these challenges to valid data analysis.
描述(由申请人提供):比较有效性研究(CER)研究有效性的常见但经常被忽视的威胁包括对数据最终分析至关重要的二元变量的错误分类或缺失。这些变量可能包括标准或重复测量逻辑回归模型中感兴趣的结果、感兴趣的因素(暴露)或所研究关联的重要混杂因素。该提案旨在促进对给定 CER 分析可能产生的偏差的调查,并提供基于研究设计的补救措施,通过这些措施可以恢复有效性。重点是进行敏感性分析的统计方法,以及旨在有效利用补充数据源的方法。后者包括验证数据(在错误分类的情况下)和所谓的重新评估数据(在潜在信息缺失的情况下)。整个过程中的主要考虑因素包括将特定于主题的协变量纳入感兴趣的模型以及潜在的错误分类或缺失过程的模型中。另一个主要目标是为所有拟议的纳入补充数据的分析建立一个相对一致的基于可能性的框架,并利用通用统计软件提供用户友好的程序,以使进行 CER 的人员广泛且容易地使用这些方法。虽然不限于特定应用,但拟议的研究从两项现实世界的研究中汲取动力并有助于说明。第一个是艾滋病毒流行病学研究(HERS),这是一项观察性队列研究,通过重复访问,通过容易出错的复杂检测技术对细菌性阴道病进行二元诊断。第二项是基于急诊室的眼科研究,其中非散瞳眼底摄影将用于诊断严重的眼部疾病,并将与现有的标准诊断方法进行比较。这两项研究都涉及内部验证数据,以促进基于易错的诊断方法的错误分类的纠正,并且两项研究也都受到结果和/或预测数据缺失的影响。
公共卫生相关性:该项目的目标是提供统计方法,帮助比较有效性研究 (CER) 调查人员解决数据分析中遇到的常见问题。当二元(“是/否”)数据被错误测量(错误分类),或者由于可能与研究中受试者信息相关的原因有时未观察到(缺失)数据时,该项目关注的问题就会出现。目的是为 CER 研究人员提供相对易于使用、但有效且强大的方法来应对有效数据分析的这些挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert H Lyles其他文献
Robert H Lyles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert H Lyles', 18)}}的其他基金
Refined Capture-Recapture Methods for Surveilling Cancer Recurrence
用于监测癌症复发的精细捕获-再捕获方法
- 批准号:
10522710 - 财政年份:2022
- 资助金额:
$ 44.17万 - 项目类别:
Refined Capture-Recapture Methods for Surveilling Cancer Recurrence
用于监测癌症复发的精细捕获-再捕获方法
- 批准号:
10707088 - 财政年份:2022
- 资助金额:
$ 44.17万 - 项目类别:
Analytical Methods: Environmental/Reproductive Epidemiology
分析方法:环境/生殖流行病学
- 批准号:
7527724 - 财政年份:2003
- 资助金额:
$ 44.17万 - 项目类别:
Analytical Methods: Environmental/Reproductive Epidemiology
分析方法:环境/生殖流行病学
- 批准号:
8090431 - 财政年份:2003
- 资助金额:
$ 44.17万 - 项目类别:
Analytical Methods: Environmental/Reproductive Epidemiology
分析方法:环境/生殖流行病学
- 批准号:
7884625 - 财政年份:2003
- 资助金额:
$ 44.17万 - 项目类别:
Analytical Methods: Environmental/Reproductive Epidemiology
分析方法:环境/生殖流行病学
- 批准号:
7686335 - 财政年份:2003
- 资助金额:
$ 44.17万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 44.17万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 44.17万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 44.17万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 44.17万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 44.17万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 44.17万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 44.17万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 44.17万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 44.17万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 44.17万 - 项目类别:
Research Grant














{{item.name}}会员




