Refined Capture-Recapture Methods for Surveilling Cancer Recurrence

用于监测癌症复发的精细捕获-再捕获方法

基本信息

  • 批准号:
    10707088
  • 负责人:
  • 金额:
    $ 34.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-20 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract The monitoring of disease prevalence and estimation of the number of affected individuals in a defined population are among the crucial goals of epidemiologic surveillance for chronic and infectious diseases. This proposal aims to provide novel and reliable statistical tools to improve best practices for design and analysis of such surveillance studies. We take specific motivation from timely challenges associated with the registry- based monitoring of cancer recurrences in the state of Georgia Cancer Registry (GCR). We focus on customizing capture-recapture (C-R) methods, which are ever increasingly used tools for estimating total numbers of cases or deaths based on multiple epidemiologic surveillance streams. We clarify underappreciated pitfalls associated with widely popular log-linear model-based C-R techniques, and propose an accessible approach to sensitivity analysis with data visualization that promotes a general strategy for more appropriate propagation of uncertainty into ultimate estimates of case totals. This in turn provides a gateway to a broad class of useful models, whereby practitioners can transparently encode assumptions about how surveillance streams operate relative to one another at the population level. As a next step, we consider the case in which one surveillance stream is implemented by means of a well-controlled sampling design. Under appropriate conditions, this provides what we refer to as an “anchor stream”, whereby otherwise ever-present inherent uncertainties in specifying a defensible C-R model are overcome. In this setting, we will promote best statistical practices for estimating case totals by means of a novel C-R estimator that harnesses the power of the principled sampling behind the anchor stream while offering markedly enhanced precision. We propose to extend this approach to account for misclassification, which is inevitable in the case of our motivating study of cancer recurrence and in any setting in which surveillance streams identify cases in an error-prone manner. We will tailor proposed methodology toward breast and colorectal cancer recurrence monitoring via the ongoing Cancer Recurrence Information and Surveillance Program (CRISP), based on the GCR. CRISP is actively compiling informative but potentially false-positive recurrence signals from up to 6 data streams, and conducts validation sampling through protocol-based medical record review to confirm true cases among signaled recurrences. We will use such validation data to adjust for misclassification in estimating C-R-based recurrence counts. In particular, the current project will implement a principled “anchor stream” random sample of 200 GCR patients for validation through medical record review, leading to valid and demonstrably precise estimates of true recurrence counts over the study period that are free of misclassification bias.
项目总结/文摘

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using Capture-Recapture Methodology to Enhance Precision of Representative Sampling-Based Case Count Estimates.
使用捕获-重新捕获方法来提高基于代表性抽样的病例数估计的精度。
  • DOI:
    10.1093/jssam/smab052
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Lyles,RobertH;Zhang,Yuzi;Ge,Lin;England,Cameron;Ward,Kevin;Lash,TimothyL;Waller,LanceA
  • 通讯作者:
    Waller,LanceA
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert H Lyles其他文献

Robert H Lyles的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert H Lyles', 18)}}的其他基金

Refined Capture-Recapture Methods for Surveilling Cancer Recurrence
用于监测癌症复发的精细捕获-再捕获方法
  • 批准号:
    10522710
  • 财政年份:
    2022
  • 资助金额:
    $ 34.18万
  • 项目类别:
Accessible Handling of Misclassified or Missing Binary Variables in CER Studies
CER 研究中错误分类或缺失的二元变量的可访问处理
  • 批准号:
    8037394
  • 财政年份:
    2010
  • 资助金额:
    $ 34.18万
  • 项目类别:
Analytical Methods: Environmental/Reproductive Epidemiology
分析方法:环境/生殖流行病学
  • 批准号:
    7527724
  • 财政年份:
    2003
  • 资助金额:
    $ 34.18万
  • 项目类别:
Analytical Methods: Environmental/Reproductive Epidemiology
分析方法:环境/生殖流行病学
  • 批准号:
    8090431
  • 财政年份:
    2003
  • 资助金额:
    $ 34.18万
  • 项目类别:
Analytical Methods: Environmental/Reproductive Epidemiology
分析方法:环境/生殖流行病学
  • 批准号:
    7884625
  • 财政年份:
    2003
  • 资助金额:
    $ 34.18万
  • 项目类别:
Analytical Methods: Environmental/Reproductive Epidemiology
分析方法:环境/生殖流行病学
  • 批准号:
    7686335
  • 财政年份:
    2003
  • 资助金额:
    $ 34.18万
  • 项目类别:
Core F: Biostatistics and Bioinformatics
核心F:生物统计学和生物信息学
  • 批准号:
    10457631
  • 财政年份:
    2002
  • 资助金额:
    $ 34.18万
  • 项目类别:
Core F: Biostatistics and Bioinformatics
核心F:生物统计学和生物信息学
  • 批准号:
    10839607
  • 财政年份:
    2002
  • 资助金额:
    $ 34.18万
  • 项目类别:
Core F: Biostatistics and Bioinformatics Core
核心 F:生物统计学和生物信息学核心
  • 批准号:
    9752489
  • 财政年份:
  • 资助金额:
    $ 34.18万
  • 项目类别:
Core F: Biostatistics and Bioinformatics Core
核心 F:生物统计学和生物信息学核心
  • 批准号:
    9322655
  • 财政年份:
  • 资助金额:
    $ 34.18万
  • 项目类别:

相似海外基金

Understanding early causal pathways in ADHD: can early-emerging atypicalities in activity and affect cause later-emerging difficulties in attention?
了解 ADHD 的早期因果路径:早期出现的活动和影响的非典型性是否会导致后来出现的注意力困难?
  • 批准号:
    MR/X021998/1
  • 财政年份:
    2023
  • 资助金额:
    $ 34.18万
  • 项目类别:
    Research Grant
Predictive information and cognitive process: How affect the emotional value of pre-cue on the attention control process
预测信息与认知过程:预提示的情感价值如何影响注意控制过程
  • 批准号:
    22K03209
  • 财政年份:
    2022
  • 资助金额:
    $ 34.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Visuocortical Dynamics of Affect-Biased Attention in the Development of Adolescent Depression
青少年抑郁症发展过程中情感偏向注意力的视觉皮层动力学
  • 批准号:
    10380686
  • 财政年份:
    2019
  • 资助金额:
    $ 34.18万
  • 项目类别:
Spatial and Temporal Mechanisms of Affect-Biased Attention
情感偏向注意力的时空机制
  • 批准号:
    RGPIN-2014-04202
  • 财政年份:
    2019
  • 资助金额:
    $ 34.18万
  • 项目类别:
    Discovery Grants Program - Individual
Visuocortical Dynamics of Affect-Biased Attention in the Development of Adolescent Depression
青少年抑郁症发展过程中情感偏向注意力的视觉皮层动力学
  • 批准号:
    9888437
  • 财政年份:
    2019
  • 资助金额:
    $ 34.18万
  • 项目类别:
Visuocortical Dynamics of Affect-Biased Attention in the Development of Adolescent Depression
青少年抑郁症发展过程中情感偏向注意力的视觉皮层动力学
  • 批准号:
    10597082
  • 财政年份:
    2019
  • 资助金额:
    $ 34.18万
  • 项目类别:
Spatial and Temporal Mechanisms of Affect-Biased Attention
情感偏向注意力的时空机制
  • 批准号:
    RGPIN-2014-04202
  • 财政年份:
    2018
  • 资助金额:
    $ 34.18万
  • 项目类别:
    Discovery Grants Program - Individual
Spatial and Temporal Mechanisms of Affect-Biased Attention
情感偏向注意力的时空机制
  • 批准号:
    RGPIN-2014-04202
  • 财政年份:
    2017
  • 资助金额:
    $ 34.18万
  • 项目类别:
    Discovery Grants Program - Individual
Emerging relations between attention and negative affect in the first two years of life
生命头两年注意力与负面情绪之间的新关系
  • 批准号:
    9673285
  • 财政年份:
    2016
  • 资助金额:
    $ 34.18万
  • 项目类别:
Spatial and Temporal Mechanisms of Affect-Biased Attention
情感偏向注意力的时空机制
  • 批准号:
    RGPIN-2014-04202
  • 财政年份:
    2016
  • 资助金额:
    $ 34.18万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了