Refined Capture-Recapture Methods for Surveilling Cancer Recurrence
用于监测癌症复发的精细捕获-再捕获方法
基本信息
- 批准号:10707088
- 负责人:
- 金额:$ 34.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAttentionAutomobile DrivingBreastBreast Cancer PatientCardiovascular DiseasesCessation of lifeCharacteristicsChronic DiseaseCodeColorectalColorectal CancerCommunicable DiseasesComputer softwareDataData SourcesDevelopmentDiagnosticDiseaseDisease SurveillanceEnsureEpidemiologic MonitoringEpidemiologistEpidemiologyFundingFutureGoalsHIV InfectionsHIV/HCVIndividualIntuitionLog-Linear ModelsMalignant NeoplasmsManufacturerMedical RecordsMethodologyMethodsModelingMonitorMonitoring for RecurrenceMotivationPathway interactionsPatientsPerformancePopulationPredictive ValuePrevalencePropertyProtocols documentationRecurrenceRecurrent Malignant NeoplasmRegistriesReproducibilityResearch DesignResearch PersonnelResearch Project GrantsSamplingSensitivity and SpecificitySignal TransductionSpecific qualifier valueStatistical MethodsStreamSurveillance ProgramSystemTechniquesTrainingTuberculosisUncertaintyValidationViralanalytical methodcancer recurrencecomparativedata streamsdata visualizationdesigndisease registryflexibilityfollow-upimprovedmalignant breast neoplasmmortalitymultiple data sourcesneoplasm registrynovelpathogenpatient registrysimulationsurveillance datasurveillance studytheoriestool
项目摘要
Project Summary/Abstract
The monitoring of disease prevalence and estimation of the number of affected individuals in a defined
population are among the crucial goals of epidemiologic surveillance for chronic and infectious diseases. This
proposal aims to provide novel and reliable statistical tools to improve best practices for design and analysis of
such surveillance studies. We take specific motivation from timely challenges associated with the registry-
based monitoring of cancer recurrences in the state of Georgia Cancer Registry (GCR).
We focus on customizing capture-recapture (C-R) methods, which are ever increasingly used tools for
estimating total numbers of cases or deaths based on multiple epidemiologic surveillance streams. We clarify
underappreciated pitfalls associated with widely popular log-linear model-based C-R techniques, and propose
an accessible approach to sensitivity analysis with data visualization that promotes a general strategy for more
appropriate propagation of uncertainty into ultimate estimates of case totals. This in turn provides a gateway to
a broad class of useful models, whereby practitioners can transparently encode assumptions about how
surveillance streams operate relative to one another at the population level. As a next step, we consider the
case in which one surveillance stream is implemented by means of a well-controlled sampling design. Under
appropriate conditions, this provides what we refer to as an “anchor stream”, whereby otherwise ever-present
inherent uncertainties in specifying a defensible C-R model are overcome. In this setting, we will promote best
statistical practices for estimating case totals by means of a novel C-R estimator that harnesses the power of
the principled sampling behind the anchor stream while offering markedly enhanced precision. We propose to
extend this approach to account for misclassification, which is inevitable in the case of our motivating study of
cancer recurrence and in any setting in which surveillance streams identify cases in an error-prone manner.
We will tailor proposed methodology toward breast and colorectal cancer recurrence monitoring via the
ongoing Cancer Recurrence Information and Surveillance Program (CRISP), based on the GCR. CRISP is
actively compiling informative but potentially false-positive recurrence signals from up to 6 data streams, and
conducts validation sampling through protocol-based medical record review to confirm true cases among
signaled recurrences. We will use such validation data to adjust for misclassification in estimating C-R-based
recurrence counts. In particular, the current project will implement a principled “anchor stream” random sample
of 200 GCR patients for validation through medical record review, leading to valid and demonstrably precise
estimates of true recurrence counts over the study period that are free of misclassification bias.
项目概要/摘要
监测疾病流行情况并估计一定范围内受影响的人数
人口是慢性病和传染病流行病学监测的关键目标之一。这
该提案旨在提供新颖且可靠的统计工具,以改进设计和分析的最佳实践
此类监测研究。我们从与注册管理机构相关的及时挑战中获得特定的动力 -
基于乔治亚州癌症登记处 (GCR) 的癌症复发监测。
我们专注于定制捕获-再捕获 (C-R) 方法,这些方法越来越多地用于
根据多个流行病学监测流估计病例或死亡总数。我们澄清
与广泛流行的基于对数线性模型的 C-R 技术相关的未被充分认识的陷阱,并提出
一种通过数据可视化进行敏感性分析的易于使用的方法,可促进更多的总体策略
将不确定性适当传播到案例总数的最终估计中。这反过来又提供了一个门户
一类广泛的有用模型,从业者可以通过这些模型透明地编码有关如何进行的假设
监测流在人口层面上相互关联。作为下一步,我们考虑
通过良好控制的采样设计实施一个监视流的情况。在下面
在适当的条件下,这提供了我们所说的“锚流”,否则一直存在
克服了指定可防御的 C-R 模型时固有的不确定性。在此背景下,我们将竭尽所能地推广
通过一种新颖的 C-R 估计器来估计病例总数的统计实践,该估计器利用了
锚流背后的原则性采样,同时提供显着增强的精度。我们建议
扩展这种方法来解释错误分类,这在我们的动机研究中是不可避免的
癌症复发以及监测流以容易出错的方式识别病例的任何环境中。
我们将通过以下方法定制乳腺癌和结直肠癌复发监测的拟议方法
正在进行的基于 GCR 的癌症复发信息和监测计划 (CRISP)。克里斯普是
从多达 6 个数据流中主动编译信息丰富但可能误报的复发信号,以及
通过基于协议的医疗记录审查进行验证抽样,以确认真实病例
预示着复发。我们将使用此类验证数据来调整基于 C-R 的估计中的错误分类
重复计数。特别是,当前项目将实施有原则的“锚流”随机抽样
通过病历审查对 200 名 GCR 患者进行验证,从而得出有效且精确的结果
对研究期间真实复发计数的估计,不存在错误分类偏差。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using Capture-Recapture Methodology to Enhance Precision of Representative Sampling-Based Case Count Estimates.
使用捕获-重新捕获方法来提高基于代表性抽样的病例数估计的精度。
- DOI:10.1093/jssam/smab052
- 发表时间:2022
- 期刊:
- 影响因子:2.1
- 作者:Lyles,RobertH;Zhang,Yuzi;Ge,Lin;England,Cameron;Ward,Kevin;Lash,TimothyL;Waller,LanceA
- 通讯作者:Waller,LanceA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert H Lyles其他文献
Robert H Lyles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert H Lyles', 18)}}的其他基金
Refined Capture-Recapture Methods for Surveilling Cancer Recurrence
用于监测癌症复发的精细捕获-再捕获方法
- 批准号:
10522710 - 财政年份:2022
- 资助金额:
$ 34.18万 - 项目类别:
Accessible Handling of Misclassified or Missing Binary Variables in CER Studies
CER 研究中错误分类或缺失的二元变量的可访问处理
- 批准号:
8037394 - 财政年份:2010
- 资助金额:
$ 34.18万 - 项目类别:
Analytical Methods: Environmental/Reproductive Epidemiology
分析方法:环境/生殖流行病学
- 批准号:
7527724 - 财政年份:2003
- 资助金额:
$ 34.18万 - 项目类别:
Analytical Methods: Environmental/Reproductive Epidemiology
分析方法:环境/生殖流行病学
- 批准号:
8090431 - 财政年份:2003
- 资助金额:
$ 34.18万 - 项目类别:
Analytical Methods: Environmental/Reproductive Epidemiology
分析方法:环境/生殖流行病学
- 批准号:
7884625 - 财政年份:2003
- 资助金额:
$ 34.18万 - 项目类别:
Analytical Methods: Environmental/Reproductive Epidemiology
分析方法:环境/生殖流行病学
- 批准号:
7686335 - 财政年份:2003
- 资助金额:
$ 34.18万 - 项目类别:
相似海外基金
Understanding early causal pathways in ADHD: can early-emerging atypicalities in activity and affect cause later-emerging difficulties in attention?
了解 ADHD 的早期因果路径:早期出现的活动和影响的非典型性是否会导致后来出现的注意力困难?
- 批准号:
MR/X021998/1 - 财政年份:2023
- 资助金额:
$ 34.18万 - 项目类别:
Research Grant
Predictive information and cognitive process: How affect the emotional value of pre-cue on the attention control process
预测信息与认知过程:预提示的情感价值如何影响注意控制过程
- 批准号:
22K03209 - 财政年份:2022
- 资助金额:
$ 34.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Visuocortical Dynamics of Affect-Biased Attention in the Development of Adolescent Depression
青少年抑郁症发展过程中情感偏向注意力的视觉皮层动力学
- 批准号:
10380686 - 财政年份:2019
- 资助金额:
$ 34.18万 - 项目类别:
Spatial and Temporal Mechanisms of Affect-Biased Attention
情感偏向注意力的时空机制
- 批准号:
RGPIN-2014-04202 - 财政年份:2019
- 资助金额:
$ 34.18万 - 项目类别:
Discovery Grants Program - Individual
Visuocortical Dynamics of Affect-Biased Attention in the Development of Adolescent Depression
青少年抑郁症发展过程中情感偏向注意力的视觉皮层动力学
- 批准号:
9888437 - 财政年份:2019
- 资助金额:
$ 34.18万 - 项目类别:
Visuocortical Dynamics of Affect-Biased Attention in the Development of Adolescent Depression
青少年抑郁症发展过程中情感偏向注意力的视觉皮层动力学
- 批准号:
10597082 - 财政年份:2019
- 资助金额:
$ 34.18万 - 项目类别:
Spatial and Temporal Mechanisms of Affect-Biased Attention
情感偏向注意力的时空机制
- 批准号:
RGPIN-2014-04202 - 财政年份:2018
- 资助金额:
$ 34.18万 - 项目类别:
Discovery Grants Program - Individual
Spatial and Temporal Mechanisms of Affect-Biased Attention
情感偏向注意力的时空机制
- 批准号:
RGPIN-2014-04202 - 财政年份:2017
- 资助金额:
$ 34.18万 - 项目类别:
Discovery Grants Program - Individual
Emerging relations between attention and negative affect in the first two years of life
生命头两年注意力与负面情绪之间的新关系
- 批准号:
9673285 - 财政年份:2016
- 资助金额:
$ 34.18万 - 项目类别:
Spatial and Temporal Mechanisms of Affect-Biased Attention
情感偏向注意力的时空机制
- 批准号:
RGPIN-2014-04202 - 财政年份:2016
- 资助金额:
$ 34.18万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




