Recursive partitioning and ensemble methods for classifying an ordinal response
用于对序数响应进行分类的递归划分和集成方法
基本信息
- 批准号:8049892
- 负责人:
- 金额:$ 0.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-15 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsBehavioral ResearchBenchmarkingBiological Neural NetworksClassificationCommunitiesDataData AnalysesData SetDiscriminant AnalysisDrug toxicityEnvironmentGene ExpressionGenesGenomicsGoalsHealthHealth SurveysImage AnalysisIn complete remissionIndividualLearningLiteratureMachine LearningMeasuresMethodologyMethodsModelingNatureNeoplasm MetastasisNorthern BlottingOutcomePerformanceProcessProgressive DiseaseRelative (related person)SimulateStable DiseaseStagingStructureTechnologyTimeTreescomputerized toolsforestimprovedindexinginterestneglectnovelpartial responsepredictive modelingprogramsresearch studyresponsesocialtumor
项目摘要
DESCRIPTION (provided by applicant):
Classification methods applied to microarray data have largely been those developed by the machine learning community, since the large p (number of covariates) problem is inherent in high-throughput genomic experiments. The random forest (RF) methodology has been demonstrated to be competitive with other machine learning approaches (e.g., neural networks and support vector machines). Apart from improved accuracy, a clear advantage of the RF method in comparison to most machine learning approaches is that variable importance measures are provided by the algorithm. Therefore, one can assess the relative importance each gene has on the predictive model. In a large number of applications, the class to be predicted may be inherently ordinal. Examples of ordinal responses include TNM stage (I,II,III, IV); drug toxicity (none, mild, moderate, severe); or response to treatment classified as complete response, partial response, stable disease, and progressive disease. These responses are ordinal; while there is an inherent ordering among the responses, there is no known underlying numerical relationship between them. While one can apply standard nominal response methods to ordinal response data, in so doing one loses the ordered information inherent in the data. Since ordinal classification methods have been largely neglected in the machine learning literature, the specific aims of this proposal are to (1) extend the recursive partitioning and RF methodologies for predicting an ordinal response by developing computational tools for the R programming environment; (2) evaluate the proposed ordinal classification methods against alternative methods using simulated, benchmark, and gene expression datasets; (3) develop and evaluate methods for assessing variable importance when interest is in predicting an ordinal response. Novel splitting criteria for classification tree growing and methods for estimating variable importance are proposed, which appropriately take the nature of the ordinal response into consideration. In addition, the Generalized Gini index and ordered twoing methods will be studied under the ensemble learning framework, which has not been previously conducted. This project is significant to the scientific community since the ordinal classification methods to be made available from this project will be broadly applicable to a variety of health, social, and behavioral research fields, which commonly collect responses on an ordinal scale.
描述(由申请人提供):
应用于微阵列数据的分类方法主要是由机器学习社区开发的,因为大p(协变量数)问题是高通量基因组实验中固有的。随机森林(RF)方法已被证明与其他机器学习方法(例如,神经网络和支持向量机)。除了提高精度外,RF方法与大多数机器学习方法相比的一个明显优势是算法提供了变量重要性度量。因此,可以评估每个基因对预测模型的相对重要性。在大量的应用中,要预测的类可以是固有的序数。顺序响应的实例包括TNM分期(I、II、III、IV);药物毒性(无、轻度、中度、重度);或对治疗的响应,分类为完全响应、部分响应、稳定疾病和进行性疾病。这些反应是有序的;虽然在这些响应之间存在固有的排序,但它们之间没有已知的基本数字关系。虽然人们可以将标准的名义响应方法应用于有序响应数据,但这样做会丢失数据中固有的有序信息。由于顺序分类方法在机器学习文献中被很大程度上忽视,因此该提案的具体目标是(1)通过开发用于R编程环境的计算工具来扩展用于预测顺序响应的递归划分和RF方法;(2)使用模拟,基准和基因表达数据集来评估所提出的顺序分类方法与替代方法;(3)开发和评估方法,以评估变量的重要性时,感兴趣的是在预测一个有序的反应。提出了新的分类树生长的分裂准则和估计变量重要性的方法,这些准则适当地考虑了有序响应的性质。此外,广义基尼指数和有序两种方法将在集成学习框架下进行研究,这是以前没有进行过的。该项目对科学界具有重要意义,因为从该项目中获得的有序分类方法将广泛适用于各种健康,社会和行为研究领域,这些领域通常收集有序规模的反应。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ordinal response prediction using bootstrap aggregation, with application to a high-throughput methylation data set.
- DOI:10.1002/sim.3707
- 发表时间:2009-12-20
- 期刊:
- 影响因子:2
- 作者:Archer, K. J.;Mas, V. R.
- 通讯作者:Mas, V. R.
rpartOrdinal: An R Package for Deriving a Classification Tree for Predicting an Ordinal Response.
rpartOrdinal:用于派生分类树以预测序数响应的 R 包。
- DOI:10.18637/jss.v034.i07
- 发表时间:2010
- 期刊:
- 影响因子:5.8
- 作者:Archer,KellieJ
- 通讯作者:Archer,KellieJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kellie J. Archer其他文献
Regularized Mixture Cure Models Identify a Gene Signature That Improves Risk Stratification within the Favorable-Risk Group in 2017 European Leukemianet (ELN) Classification of Acute Myeloid Leukemia (Alliance 152010)
- DOI:
10.1182/blood-2022-166477 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Kellie J. Archer;Han Fu;Krzysztof Mrózek;Deedra Nicolet;Jessica Kohlschmidt;Alice S. Mims;Geoffrey L. Uy;Wendy Stock;John C. Byrd;Ann-Kathrin Eisfeld - 通讯作者:
Ann-Kathrin Eisfeld
Characterization of Survival Outcomes and Clinical and Molecular Modulators in Adult Patients with Core-Binding Factor Acute Myeloid Leukemia (CBF-AML) Treated with Hidac Consolidation: An Alliance Legacy Study
- DOI:
10.1182/blood-2022-167210 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Jonathan Hyak;Deedra Nicolet;Jessica Kohlschmidt;Kellie J. Archer;James S. Blachly;Karilyn T. Larkin;Bayard L. Powell;Jonathan E. Kolitz;Maria R. Baer;William G. Blum;Geoffrey L. Uy;Wendy Stock;Richard M. Stone;John C. Byrd;Krzysztof Mrózek;Ann-Kathrin Eisfeld;Alice S. Mims - 通讯作者:
Alice S. Mims
Comparing genetic profiles of embryonic day 9 (E9) mouse yolk sac erythroid and erythroid and epithelial cells isolated by microdissection
- DOI:
10.1016/j.bcmd.2006.10.124 - 发表时间:
2007-03-01 - 期刊:
- 影响因子:
- 作者:
Latasha C. Redmond;Jack L. Haar;Catherine I. Dumur;Kellie J. Archer;Priyadarshi Basu;Joyce A. Lloyd - 通讯作者:
Joyce A. Lloyd
Beat-AML 2024 ELN–refined risk stratification for older adults with newly diagnosed AML given lower-intensity therapy
- DOI:
10.1182/bloodadvances.2024013685 - 发表时间:
2024-10-22 - 期刊:
- 影响因子:
- 作者:
Fieke W. Hoff;William G. Blum;Ying Huang;Rina Li Welkie;Ronan T. Swords;Elie Traer;Eytan M. Stein;Tara L. Lin;Kellie J. Archer;Prapti A. Patel;Robert H. Collins;Maria R. Baer;Vu H. Duong;Martha L. Arellano;Wendy Stock;Olatoyosi Odenike;Robert L. Redner;Tibor Kovacsovics;Michael W. Deininger;Joshua F. Zeidner - 通讯作者:
Joshua F. Zeidner
Outcome Prediction By the New 2022 European Leukemia Net (ELN) Genetic-Risk Classification for Adult Patients (Pts) with Acute Myeloid Leukemia (AML): An Alliance Study
- DOI:
10.1182/blood-2022-167352 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Krzysztof Mrózek;Jessica Kohlschmidt;James S. Blachly;Deedra Nicolet;Andrew J. Carroll;Kellie J. Archer;Alice S. Mims;Karilyn T. Larkin;Shelley Orwick;Christopher C. Oakes;Jonathan E. Kolitz;Bayard L. Powell;William G. Blum;Guido Marcucci;Maria R. Baer;Geoffrey L. Uy;Wendy Stock;John C. Byrd;Ann-Kathrin Eisfeld - 通讯作者:
Ann-Kathrin Eisfeld
Kellie J. Archer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kellie J. Archer', 18)}}的其他基金
Pretransplant comprehensive scores to predict long term graft outcomes
移植前综合评分可预测长期移植结果
- 批准号:
10679624 - 财政年份:2023
- 资助金额:
$ 0.57万 - 项目类别:
Penalized mixture cure models for identifying genomic features associated with outcome in acute myeloid leukemia
用于识别与急性髓系白血病结果相关的基因组特征的惩罚混合治疗模型
- 批准号:
10340087 - 财政年份:2022
- 资助金额:
$ 0.57万 - 项目类别:
Penalized mixture cure models for identifying genomic features associated with outcome in acute myeloid leukemia
用于识别与急性髓系白血病结果相关的基因组特征的惩罚混合治疗模型
- 批准号:
10544523 - 财政年份:2022
- 资助金额:
$ 0.57万 - 项目类别:
Assessment of Donor Quality for Improving Kidney Transplant Outcomes
评估捐献者质量以改善肾移植结果
- 批准号:
9262665 - 财政年份:2017
- 资助金额:
$ 0.57万 - 项目类别:
Assessment of Donor Quality for Improving Kidney Transplant Outcomes
评估捐献者质量以改善肾移植结果
- 批准号:
10203464 - 财政年份:2017
- 资助金额:
$ 0.57万 - 项目类别:
Assessment of Donor Quality for Improving Kidney Transplant Outcomes
评估捐献者质量以改善肾移植结果
- 批准号:
9753687 - 财政年份:2017
- 资助金额:
$ 0.57万 - 项目类别:
Informatic tools for predicting an ordinal response for high-dimensional data
用于预测高维数据顺序响应的信息工具
- 批准号:
9273725 - 财政年份:2012
- 资助金额:
$ 0.57万 - 项目类别:
Informatic tools for predicting an ordinal response for high-dimensional data
用于预测高维数据顺序响应的信息工具
- 批准号:
8714054 - 财政年份:2012
- 资助金额:
$ 0.57万 - 项目类别:
Informatic tools for predicting an ordinal response for high-dimensional data
用于预测高维数据顺序响应的信息工具
- 批准号:
8216289 - 财政年份:2012
- 资助金额:
$ 0.57万 - 项目类别:
Recursive partitioning and ensemble methods for classifying an ordinal response
用于对序数响应进行分类的递归划分和集成方法
- 批准号:
7805045 - 财政年份:2009
- 资助金额:
$ 0.57万 - 项目类别:
相似海外基金
Behavioral research at individual level in supply chains: Model development and exploratory analysis
供应链中个体层面的行为研究:模型开发和探索性分析
- 批准号:
23K01526 - 财政年份:2023
- 资助金额:
$ 0.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Behavioral Research Mentorship in Diabetes for Early Career Scientists from Diverse and Underrepresented Groups.
为来自多元化和代表性不足群体的早期职业科学家提供糖尿病行为研究指导。
- 批准号:
10795522 - 财政年份:2023
- 资助金额:
$ 0.57万 - 项目类别:
Massachusetts Center for Alzheimer and dEmeNtia behaVIoral reSearch In minOrity agiNg (Mass-ENVISION)
马萨诸塞州阿尔茨海默病和痴呆症少数群体行为研究中心 (Mass-ENVISION)
- 批准号:
10729789 - 财政年份:2023
- 资助金额:
$ 0.57万 - 项目类别:
Developing and Assessing Ideas for Social and Behavioral Research to Speed Efficient and Equitable Industrial Decarbonization: A Workshop
制定和评估社会和行为研究的想法,以加速高效和公平的工业脱碳:研讨会
- 批准号:
2240463 - 财政年份:2022
- 资助金额:
$ 0.57万 - 项目类别:
Standard Grant
TO PROVIDE BIO-MEDICAL AND BEHAVIORAL RESEARCH RESOURCES AND CLINICAL RESEARCH COORDINATING SERVICES TO SUPPORT THE NIDA CLINICAL TRIALS NETWORK (CTN)
提供生物医学和行为研究资源以及临床研究协调服务以支持 NIDA 临床试验网络 (CTN)
- 批准号:
10617997 - 财政年份:2022
- 资助金额:
$ 0.57万 - 项目类别:
Development of a Frontier Magnetic Resonance (MR) Imaging Technology As a Tool for Visualization and Quantified Vascular-Feature Measurement for Use in Brain and Behavioral Research on Small Animals
开发前沿磁共振 (MR) 成像技术作为可视化和量化血管特征测量的工具,用于小动物的大脑和行为研究
- 批准号:
10384839 - 财政年份:2022
- 资助金额:
$ 0.57万 - 项目类别:
Behavioral Research of Human Capital Information Usefulness: Perceptions and Judgements in some Japanese financial firms
人力资本信息有用性的行为研究:一些日本金融公司的看法和判断
- 批准号:
22K01822 - 财政年份:2022
- 资助金额:
$ 0.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
TO PROVIDE BIO-MEDICAL AND BEHAVIORAL RESEARCH RESOURCES AND CLINICAL RESEARCH COORDINATING SERVICES TO SUPPORT THE NIDA CLINICAL TRIALS NETWORK (CTN)
提供生物医学和行为研究资源以及临床研究协调服务以支持 NIDA 临床试验网络 (CTN)
- 批准号:
10538151 - 财政年份:2021
- 资助金额:
$ 0.57万 - 项目类别:
Improving Causal Inferences in Child and Family Behavioral Research
改善儿童和家庭行为研究中的因果推断
- 批准号:
10354360 - 财政年份:2021
- 资助金额:
$ 0.57万 - 项目类别:
Improving Causal Inferences in Child and Family Behavioral Research
改善儿童和家庭行为研究中的因果推断
- 批准号:
10495247 - 财政年份:2021
- 资助金额:
$ 0.57万 - 项目类别:














{{item.name}}会员




