Modeling speech intelligibility in competing backgrounds by the hearing-impaired
对听障者在竞争背景下的语音清晰度进行建模
基本信息
- 批准号:8040914
- 负责人:
- 金额:$ 11.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-05 至 2013-02-28
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsClinicalClinical ManagementCommunicationComputer SimulationCuesDataDependenceDevelopmentDevicesDiagnosisDisadvantagedEmotionalEnvironmentFutureHearingHearing AidsImpairmentIndividualKnowledgeLinkMasksMeasuresMethodsModelingNoisePatientsPerformancePeripheralRehabilitation ResearchRelative (related person)ResearchResolutionRoleShapesSignal TransductionSimulateSourceSpeechSpeech IntelligibilityStagingStructureTestingWorkbaseclinical applicationcomputerized data processingexperiencehearing impairmentimprovedindexingmodels and simulationpreventpublic health relevanceresearch studysatisfactionsegregationsoundtooltool development
项目摘要
DESCRIPTION (provided by applicant): Hearing-impaired (HI) listeners are severely disadvantaged in noisy situations. Fewer than 30% of hearing-aid users are satisfied with the performance of their devices in noise, even though satisfaction levels are considerably higher for less adverse conditions (Kochkin, 2000). These difficulties are compounded in fluctuating backgrounds. While normal-hearing (NH) individuals are able to take advantage of momentary dips in the level of a masker to receive a significant (5-10 dB) fluctuating-masker benefit (FMB) to speech intelligibility relative to stationary noise, HI listeners seem unable to do so (Festen and Plomp, 1990). The proposed research aims to elucidate the mechanisms responsible for the reduced FMB in HI listeners, setting the stage for the development of signal processing algorithms to target these specific mechanisms. Attempting to explain the limited FMB in HI listeners, past studies have focused on reduced audibility, reduced spectral or temporal resolution, or limited cues for target-source separation. This proposal explores the hypothesis that differences in the signal-to-noise ratio (SNR) at which HI and NH listeners are tested contribute to FMB differences, and for some fluctuating maskers may account for most of the reduction in FMB for HI listeners. An SNR-dependent FMB is predicted by an existing model of speech intelligibility (Rhebergen et al., 2006), if the effective speech dynamic range is assumed to be narrower for modulated maskers than previously estimated for stationary noise. Experiment 1 will directly measure this effective dynamic range to refine the model and improve the accuracy of FMB predictions across SNRs. Preliminary results indicate that after SNR differences are controlled, HI and simulated HI (HISIM) listeners show a similar FMB to NH listeners for certain fluctuating maskers. Experiments 2 and 3 will differentiate fluctuating-maskers types based on the extent to which the FMB is still reduced after SNR and audibility are equalized between listener groups. This proposal has the potential to substantially impact research efforts to improve speech intelligibility in noise. For fluctuating maskers where SNR effects do not account for the full magnitude of FMB differences, the methods developed here could control SNR differences to more directly pursue impairment-related distortions responsible for limiting FMB. For fluctuating maskers where HI listeners are shown to benefit from masker fluctuations as much as NH listeners after SNR differences are controlled, future work would seek to (a) improve target speech audibility, e.g. via fast compression, which could selectively amplify a low-level target in a fluctuating background and (b) identify factors limiting intelligibility in noise, generally, with the idea that the findings should also extend to fluctuating maskers. Furthermore, the refined speech intelligibility model has the potential to improve the clinical management of HI listeners via (a) its use in the development of signal processing algorithms to improve speech intelligibility and (b) its clinical application in identifying individuals likely to suffer distortions beyond audibility that limit speech intelligibility in fluctuating backgrounds.
PUBLIC HEALTH RELEVANCE: Hearing-impaired listeners experience the most difficulty when trying to listen in noisy environments, particularly those environments with masking sounds that fluctuate in intensity, like interfering speech. This proposal seeks to understand and model the underlying causes of these particular difficulties. The knowledge gained and the computational model developed over the course of the project could significantly impact the direction of research and rehabilitation efforts aimed at alleviating the problems experienced by impaired listeners in noisy environments.
描述(申请人提供):听力受损(HI)听众在嘈杂的环境中处于严重的不利地位。只有不到30%的助听器用户对他们的设备在噪音中的表现感到满意,尽管在不那么不利的条件下,满意度要高得多(Kochkin,2000)。这些困难在起伏不定的背景下变得更加复杂。虽然听力正常的人能够利用掩蔽器水平的短暂下降来获得显著的(5-10分贝)波动掩蔽器益处(FMB),但相对于静态噪声,听力正常的听者似乎无法做到这一点(Festen and Plomp,1990)。这项拟议的研究旨在阐明导致HI听者FMB减少的机制,为开发针对这些特定机制的信号处理算法奠定基础。为了解释HI听者有限的FMB,过去的研究主要集中在可听度降低、频谱或时间分辨率降低或目标-源分离的有限线索上。这一建议探索了一种假设,即HI和NH听众测试的信噪比(SNR)的差异导致了FMB差异,对于一些波动的掩蔽者来说,可能是HI听众FMB下降的主要原因。如果假设调制掩蔽器的有效语音动态范围比先前估计的平稳噪声更窄,则通过现有的语音清晰度模型(Rhebergen等人,2006)预测依赖于SNR的FMB。实验1将直接测量这个有效的动态范围,以改进模型并提高跨SNR的FMB预测的准确性。初步结果表明,在控制信噪比差异后,对于某些波动掩蔽,HI和模拟HI(HiSIM)收听者表现出与NH收听者相似的FMB。实验2和实验3将根据在听者组之间均衡信噪比和可听度后FMB仍然降低的程度来区分波动掩蔽器类型。这项提议有可能对提高噪声中语音清晰度的研究工作产生重大影响。对于SNR效应不能完全解释FMB差异的波动掩模,这里开发的方法可以控制SNR差异,以更直接地追求与损伤相关的失真,从而限制FMB。对于波动掩蔽器,在信噪比差异被控制后,HI收听者和NH收听者从掩蔽器波动中受益的程度与NH收听者一样多,未来的工作将寻求(A)改善目标语音的可听性,例如通过快速压缩,这可以选择性地放大波动背景中的低电平目标,以及(B)一般地识别限制噪声中可懂度的因素,想法是该发现也应该扩展到波动掩蔽器。此外,改进的语音清晰度模型有可能通过(A)其用于开发信号处理算法以提高语音清晰度,以及(B)其临床应用于识别在波动背景中限制语音清晰度的、可能遭受超出可听范围的失真的个体,从而改善HI听者的临床管理。
与公共健康相关:听力受损的听众在嘈杂的环境中聆听时会遇到最大的困难,特别是在那些带有强度波动的掩蔽声的环境中,比如干扰演讲。这项建议试图了解这些特殊困难的根本原因,并以此为榜样。在项目过程中获得的知识和开发的计算模型可能会对旨在减轻在嘈杂环境中受损的听者所经历的问题的研究和康复工作的方向产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Gary Bernstein其他文献
Joshua Gary Bernstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Gary Bernstein', 18)}}的其他基金
Optimizing bilateral and single-sided-deafness cochlear implants for functioning in complex auditory environments
优化双侧和单侧耳聋人工耳蜗植入物以在复杂的听觉环境中发挥作用
- 批准号:
10654316 - 财政年份:2023
- 资助金额:
$ 11.18万 - 项目类别:
Optimizing Bilateral and Single-Sided Deafness Cochlear Implants for Functioning in Complex Auditory Environments
优化双侧和单侧耳聋人工耳蜗植入物以在复杂的听觉环境中发挥作用
- 批准号:
9216078 - 财政年份:2016
- 资助金额:
$ 11.18万 - 项目类别:
Optimizing Bilateral and Single-Sided Deafness Cochlear Implants for Functioning in Complex Auditory Environments
优化双侧和单侧耳聋人工耳蜗植入物以在复杂的听觉环境中发挥作用
- 批准号:
10065502 - 财政年份:2016
- 资助金额:
$ 11.18万 - 项目类别:
Modeling speech intelligibility in competing backgrounds by the hearing-impaired
对听障者在竞争背景下的语音清晰度进行建模
- 批准号:
8230749 - 财政年份:2010
- 资助金额:
$ 11.18万 - 项目类别:
Modeling speech intelligibility in competing backgrounds by the hearing-impaired
对听障者在竞争背景下的语音清晰度进行建模
- 批准号:
7884046 - 财政年份:2010
- 资助金额:
$ 11.18万 - 项目类别:
相似海外基金
Exploring the Potential Clinical Application of Pulse Arrival Time for Assessing Arterial Stiffness Using Machine Learning Algorithms
使用机器学习算法探索脉冲到达时间评估动脉僵硬度的潜在临床应用
- 批准号:
2649903 - 财政年份:2022
- 资助金额:
$ 11.18万 - 项目类别:
Studentship
Implementing clinical decision support for improved outpatient neurorehabilitation post-stroke and spinal cord injury through the integration of wearable technology and deep learning algorithms.
通过集成可穿戴技术和深度学习算法,实施临床决策支持,以改善中风和脊髓损伤后的门诊神经康复。
- 批准号:
475572 - 财政年份:2022
- 资助金额:
$ 11.18万 - 项目类别:
Studentship Programs
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
- 批准号:
10559690 - 财政年份:2022
- 资助金额:
$ 11.18万 - 项目类别:
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
- 批准号:
10437156 - 财政年份:2022
- 资助金额:
$ 11.18万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10277514 - 财政年份:2021
- 资助金额:
$ 11.18万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10462646 - 财政年份:2021
- 资助金额:
$ 11.18万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10631239 - 财政年份:2021
- 资助金额:
$ 11.18万 - 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
- 批准号:
10329938 - 财政年份:2021
- 资助金额:
$ 11.18万 - 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
- 批准号:
10405326 - 财政年份:2021
- 资助金额:
$ 11.18万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10809977 - 财政年份:2021
- 资助金额:
$ 11.18万 - 项目类别:














{{item.name}}会员




