Modeling speech intelligibility in competing backgrounds by the hearing-impaired

对听障者在竞争背景下的语音清晰度进行建模

基本信息

项目摘要

DESCRIPTION (provided by applicant): Hearing-impaired (HI) listeners are severely disadvantaged in noisy situations. Fewer than 30% of hearing-aid users are satisfied with the performance of their devices in noise, even though satisfaction levels are considerably higher for less adverse conditions (Kochkin, 2000). These difficulties are compounded in fluctuating backgrounds. While normal-hearing (NH) individuals are able to take advantage of momentary dips in the level of a masker to receive a significant (5-10 dB) fluctuating-masker benefit (FMB) to speech intelligibility relative to stationary noise, HI listeners seem unable to do so (Festen and Plomp, 1990). The proposed research aims to elucidate the mechanisms responsible for the reduced FMB in HI listeners, setting the stage for the development of signal processing algorithms to target these specific mechanisms. Attempting to explain the limited FMB in HI listeners, past studies have focused on reduced audibility, reduced spectral or temporal resolution, or limited cues for target-source separation. This proposal explores the hypothesis that differences in the signal-to-noise ratio (SNR) at which HI and NH listeners are tested contribute to FMB differences, and for some fluctuating maskers may account for most of the reduction in FMB for HI listeners. An SNR-dependent FMB is predicted by an existing model of speech intelligibility (Rhebergen et al., 2006), if the effective speech dynamic range is assumed to be narrower for modulated maskers than previously estimated for stationary noise. Experiment 1 will directly measure this effective dynamic range to refine the model and improve the accuracy of FMB predictions across SNRs. Preliminary results indicate that after SNR differences are controlled, HI and simulated HI (HISIM) listeners show a similar FMB to NH listeners for certain fluctuating maskers. Experiments 2 and 3 will differentiate fluctuating-maskers types based on the extent to which the FMB is still reduced after SNR and audibility are equalized between listener groups. This proposal has the potential to substantially impact research efforts to improve speech intelligibility in noise. For fluctuating maskers where SNR effects do not account for the full magnitude of FMB differences, the methods developed here could control SNR differences to more directly pursue impairment-related distortions responsible for limiting FMB. For fluctuating maskers where HI listeners are shown to benefit from masker fluctuations as much as NH listeners after SNR differences are controlled, future work would seek to (a) improve target speech audibility, e.g. via fast compression, which could selectively amplify a low-level target in a fluctuating background and (b) identify factors limiting intelligibility in noise, generally, with the idea that the findings should also extend to fluctuating maskers. Furthermore, the refined speech intelligibility model has the potential to improve the clinical management of HI listeners via (a) its use in the development of signal processing algorithms to improve speech intelligibility and (b) its clinical application in identifying individuals likely to suffer distortions beyond audibility that limit speech intelligibility in fluctuating backgrounds. PUBLIC HEALTH RELEVANCE: Hearing-impaired listeners experience the most difficulty when trying to listen in noisy environments, particularly those environments with masking sounds that fluctuate in intensity, like interfering speech. This proposal seeks to understand and model the underlying causes of these particular difficulties. The knowledge gained and the computational model developed over the course of the project could significantly impact the direction of research and rehabilitation efforts aimed at alleviating the problems experienced by impaired listeners in noisy environments.
描述(由申请人提供):听力受损(HI)的听众在嘈杂的环境中处于严重不利地位。不到30%的助听器用户对其设备在噪声中的性能感到满意,即使在不利条件较少的情况下,满意度水平也要高得多(Kochkin,2000)。这些困难在波动的背景下更加复杂。虽然听力正常(NH)的人能够利用掩蔽声水平的瞬间下降,以接收相对于平稳噪声的显著(5-10 dB)波动掩蔽声益处(FMB),但HI听众似乎无法做到这一点(Festen和Plomp,1990)。拟议的研究旨在阐明负责减少FMB在HI听众的机制,设置的信号处理算法的发展阶段,以针对这些特定的机制。试图解释有限的FMB在HI听众,过去的研究集中在降低可听度,降低频谱或时间分辨率,或有限的线索,目标源分离。该建议探讨了这样一种假设,即HI和NH听众测试时的信噪比(SNR)差异有助于FMB差异,并且对于一些波动的掩蔽物,可能是HI听众FMB减少的大部分原因。依赖于SNR的FMB由现有的语音可懂度模型预测(Rhebergen等人,2006),如果假设调制掩蔽噪声的有效语音动态范围比先前估计的稳态噪声的有效语音动态范围窄。实验1将直接测量该有效动态范围以改进模型并提高跨SNR的FMB预测的准确性。初步结果表明,在信噪比差异得到控制后,HI和模拟HI(HISIM)听众表现出类似的FMB NH听众某些波动掩蔽。实验2和3将区分波动掩蔽类型的基础上的程度,FMB仍然减少后,SNR和可听度的听众群体之间的均衡。这一提议有可能对提高噪声中语音清晰度的研究工作产生重大影响。对于SNR效应不能解释FMB差异的全部幅度的波动掩蔽物,这里开发的方法可以控制SNR差异,以更直接地追求负责限制FMB的损伤相关失真。对于波动的掩蔽音,其中HI收听者被示出在SNR差异被控制之后与NH收听者一样多地受益于掩蔽音波动,未来的工作将寻求(a)例如经由快速压缩来改善目标语音可听度,其可以选择性地放大波动背景中的低水平目标,以及(B)识别限制噪声中的可懂度的因素,通常,他们的想法是,这些发现也应该延伸到波动的掩蔽物。此外,改进的语音可懂度模型具有通过以下方式改善HI听众的临床管理的潜力:(a)其在信号处理算法的开发中的使用以改善语音可懂度,以及(B)其在识别可能遭受超出可听度的失真的个体中的临床应用,所述失真限制波动背景中的语音可懂度。 公共卫生相关性:听力受损的听众在嘈杂的环境中聆听时会遇到最大的困难,特别是那些具有强度波动的掩蔽声音的环境,如干扰语音。本建议旨在了解这些特殊困难的根本原因并建立模型。在项目过程中获得的知识和开发的计算模型可以显著影响研究和康复工作的方向,旨在减轻受损听众在嘈杂环境中遇到的问题。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Gary Bernstein其他文献

Joshua Gary Bernstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joshua Gary Bernstein', 18)}}的其他基金

Optimizing bilateral and single-sided-deafness cochlear implants for functioning in complex auditory environments
优化双侧和单侧耳聋人工耳蜗植入物以在复杂的听觉环境中发挥作用
  • 批准号:
    10654316
  • 财政年份:
    2023
  • 资助金额:
    $ 11.18万
  • 项目类别:
Optimizing Bilateral and Single-Sided Deafness Cochlear Implants for Functioning in Complex Auditory Environments
优化双侧和单侧耳聋人工耳蜗植入物以在复杂的听觉环境中发挥作用
  • 批准号:
    9216078
  • 财政年份:
    2016
  • 资助金额:
    $ 11.18万
  • 项目类别:
Optimizing Bilateral and Single-Sided Deafness Cochlear Implants for Functioning in Complex Auditory Environments
优化双侧和单侧耳聋人工耳蜗植入物以在复杂的听觉环境中发挥作用
  • 批准号:
    10065502
  • 财政年份:
    2016
  • 资助金额:
    $ 11.18万
  • 项目类别:
Modeling speech intelligibility in competing backgrounds by the hearing-impaired
对听障者在竞争背景下的语音清晰度进行建模
  • 批准号:
    7884046
  • 财政年份:
    2010
  • 资助金额:
    $ 11.18万
  • 项目类别:
Modeling speech intelligibility in competing backgrounds by the hearing-impaired
对听障者在竞争背景下的语音清晰度进行建模
  • 批准号:
    8040914
  • 财政年份:
    2010
  • 资助金额:
    $ 11.18万
  • 项目类别:

相似海外基金

Exploring the Potential Clinical Application of Pulse Arrival Time for Assessing Arterial Stiffness Using Machine Learning Algorithms
使用机器学习算法探索脉冲到达时间评估动脉僵硬度的潜在临床应用
  • 批准号:
    2649903
  • 财政年份:
    2022
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Studentship
Implementing clinical decision support for improved outpatient neurorehabilitation post-stroke and spinal cord injury through the integration of wearable technology and deep learning algorithms.
通过集成可穿戴技术和深度学习算法,实施临床决策支持,以改善中风和脊髓损伤后的门诊神经康复。
  • 批准号:
    475572
  • 财政年份:
    2022
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Studentship Programs
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
  • 批准号:
    10559690
  • 财政年份:
    2022
  • 资助金额:
    $ 11.18万
  • 项目类别:
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
  • 批准号:
    10437156
  • 财政年份:
    2022
  • 资助金额:
    $ 11.18万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10277514
  • 财政年份:
    2021
  • 资助金额:
    $ 11.18万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10462646
  • 财政年份:
    2021
  • 资助金额:
    $ 11.18万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10631239
  • 财政年份:
    2021
  • 资助金额:
    $ 11.18万
  • 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
  • 批准号:
    10329938
  • 财政年份:
    2021
  • 资助金额:
    $ 11.18万
  • 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
  • 批准号:
    10405326
  • 财政年份:
    2021
  • 资助金额:
    $ 11.18万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10809977
  • 财政年份:
    2021
  • 资助金额:
    $ 11.18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了