Forespore Engulfment During B subtilis Sporulation

枯草芽孢杆菌孢子形成过程中前孢子的吞噬

基本信息

  • 批准号:
    8065306
  • 负责人:
  • 金额:
    $ 37.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-01-01 至 2014-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Bacteria from the genera Bacillus and Clostridium produce unusually durable endospores that are the infectious agent of Anthrax and Botulism. The phagocytosis-like process of engulfment is the hallmark of endospore formation, as it creates the unique cell within a cell structure that allows spore assembly to occur within the cytoplasm. However, it has remained unclear how bacterial cells evolved the ability to perform engulfment given the simplicity of their cellular machinery and the seemingly insurmountable barrier presented by the cell wall that surrounds bacterial cells. Our studies suggest that membrane migration during engulfment is mediated by one essential protein machinery, the SpoIID/SpoIIM/SpoIIP complex that degrades the bacterial cell wall, plus two partially redundant machineries, the SpoIIQ-SpoIIIAH complex that provides a zipper-like adhesion between the developing cells and peptidoglycan biosynthesis which is essential for membrane migration when SpoIIQ is absent. The final step of engulfment, membrane fission, requires both ongoing peptidoglycan biogenesis and SpoIIIE, which is also required for the final stages of chromosome segregation and septal membrane fission during the asymmetrically positioned cell division event of sporulation. We will take a combined cell biological, genetic and biochemical approach to study the spatial regulation of peptidoglycan degradation and synthesis, the protein-protein interactions that mediate engulfment, and to understand the mechanisms by which bacterial cells catalyze membrane fission and are dynamically organized. Engulfment provides a dispensable system to study cell biological events that are essential for all bacteria, such as protein localization and membrane fusion. PUBLIC HEALTH RELEVANCE: Peptidoglycan hydrolases are found in all bacteria that synthesize peptidoglycan, and are potentially lethal because their activity must be strictly regulated to produce cell lysis. Engulfment provides an ideal system for understanding how bacteria control these potentially lethal enzymes, which are attractive targets for novel antibiotics, and has the potential to identify new drug targets in proteins that remodel bacterial membranes or mediate protein localization.
描述(由申请人提供): 芽孢杆菌属和梭菌属的细菌产生异常持久的内生孢子,这些内生孢子是炭疽和肉毒杆菌中毒的感染因子。吞噬的吞噬样过程是内生孢子形成的标志,因为它在细胞结构内产生独特的细胞,允许孢子组装在细胞质内发生。然而,目前尚不清楚细菌细胞是如何进化出吞噬能力的,因为它们的细胞机制很简单,而且细菌细胞周围的细胞壁似乎是不可逾越的屏障。我们的研究表明,在吞噬过程中的膜迁移是由一个必不可少的蛋白质机器,SpoIID/SpoIIM/SpoIIP复合物,降解细菌细胞壁,加上两个部分冗余的机器,SpoIIQ-SpoIIIAH复合物,提供了一个拉链样的发展细胞和肽聚糖生物合成之间的粘附,这是必不可少的膜迁移时SpoIIQ是缺席。吞噬的最后一步,膜分裂,需要持续的肽聚糖生物合成和SpoIIIE,这也是在孢子形成的不对称定位细胞分裂事件期间染色体分离和隔膜分裂的最后阶段所需的。我们将采取细胞生物学,遗传学和生物化学相结合的方法来研究肽聚糖降解和合成的空间调控,介导吞噬的蛋白质-蛋白质相互作用,并了解细菌细胞催化膜分裂和动态组织的机制。吞噬提供了一种生物学系统来研究对所有细菌都至关重要的细胞生物学事件,例如蛋白质定位和膜融合。 公共卫生关系: 肽聚糖水解酶存在于所有合成肽聚糖的细菌中,并且是潜在致命的,因为它们的活性必须被严格调节以产生细胞裂解。吞噬提供了一个理想的系统,用于了解细菌如何控制这些潜在致命的酶,这些酶是新型抗生素的有吸引力的靶点,并且有可能在重塑细菌膜或介导蛋白质定位的蛋白质中识别新的药物靶点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kit J Pogliano其他文献

Kit J Pogliano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kit J Pogliano', 18)}}的其他基金

STRUCTURE OF THE B SUBTILIS SEPTUM DURING DNA TRANSLOCATION
DNA 易位过程中枯草芽孢杆菌隔膜的结构
  • 批准号:
    8169638
  • 财政年份:
    2010
  • 资助金额:
    $ 37.84万
  • 项目类别:
STRUCTURE OF THE B SUBTILIS SEPTUM DURING DNA TRANSLOCATION
DNA 易位过程中枯草芽孢杆菌隔膜的结构
  • 批准号:
    7957651
  • 财政年份:
    2009
  • 资助金额:
    $ 37.84万
  • 项目类别:
FORESPORE ENGULFMENT DURING B SUBTILIS SPORULATION
枯草芽孢杆菌孢子形成期间的 Forespore 吞没
  • 批准号:
    6138638
  • 财政年份:
    1998
  • 资助金额:
    $ 37.84万
  • 项目类别:
FORESPORE ENGULFMENT DURING B SUBTILIS SPORULATION
枯草芽孢杆菌孢子形成期间的 Forespore 吞没
  • 批准号:
    2467617
  • 财政年份:
    1998
  • 资助金额:
    $ 37.84万
  • 项目类别:
Forespore Engulfment During B. subtilis Sporulation
枯草芽孢杆菌孢子形成过程中前孢子的吞噬
  • 批准号:
    6837721
  • 财政年份:
    1998
  • 资助金额:
    $ 37.84万
  • 项目类别:
Forespore Engulfment During B subtilis Sporulation
枯草芽孢杆菌孢子形成过程中前孢子的吞噬
  • 批准号:
    7671904
  • 财政年份:
    1998
  • 资助金额:
    $ 37.84万
  • 项目类别:
FORESPORE ENGULFMENT DURING B SUBTILIS SPORULATION
枯草芽孢杆菌孢子形成期间的 Forespore 吞没
  • 批准号:
    6331676
  • 财政年份:
    1998
  • 资助金额:
    $ 37.84万
  • 项目类别:
FORESPORE ENGULFMENT DURING B SUBTILIS SPORULATION
枯草芽孢杆菌孢子形成期间的 Forespore 吞没
  • 批准号:
    6490150
  • 财政年份:
    1998
  • 资助金额:
    $ 37.84万
  • 项目类别:
Forespore Engulfment During B subtilis Sporulation
枯草芽孢杆菌孢子形成过程中前孢子的吞噬
  • 批准号:
    8589593
  • 财政年份:
    1998
  • 资助金额:
    $ 37.84万
  • 项目类别:
Forespore Engulfment During B subtilis Sporulation
枯草芽孢杆菌孢子形成过程中前孢子的吞噬
  • 批准号:
    7752571
  • 财政年份:
    1998
  • 资助金额:
    $ 37.84万
  • 项目类别:

相似海外基金

Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
  • 批准号:
    10590611
  • 财政年份:
    2022
  • 资助金额:
    $ 37.84万
  • 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
  • 批准号:
    10706006
  • 财政年份:
    2022
  • 资助金额:
    $ 37.84万
  • 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
  • 批准号:
    10368975
  • 财政年份:
    2021
  • 资助金额:
    $ 37.84万
  • 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
  • 批准号:
    10365254
  • 财政年份:
    2021
  • 资助金额:
    $ 37.84万
  • 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
  • 批准号:
    10202896
  • 财政年份:
    2021
  • 资助金额:
    $ 37.84万
  • 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
  • 批准号:
    10531570
  • 财政年份:
    2021
  • 资助金额:
    $ 37.84万
  • 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
  • 批准号:
    10541847
  • 财政年份:
    2019
  • 资助金额:
    $ 37.84万
  • 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
  • 批准号:
    10319573
  • 财政年份:
    2019
  • 资助金额:
    $ 37.84万
  • 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
  • 批准号:
    10062790
  • 财政年份:
    2019
  • 资助金额:
    $ 37.84万
  • 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
  • 批准号:
    DE170100628
  • 财政年份:
    2017
  • 资助金额:
    $ 37.84万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了