Statistical Methods in Cancer Research

在癌症研究中的统计方法

基本信息

  • 批准号:
    7909203
  • 负责人:
  • 金额:
    $ 23.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The broad, long-term objectives of this research are the developments of statistical methods for the designs and analysis of clinical and epidemiological cancer studies, with or without genetic components. The specific aims of this competing renewal application include: (1) exploring semiparametric linear transformation models for univariate and multivariate continuous response variables, (2) developing graphical and numerical techniques to assess model adequacy and predictive accuracy under semi- parametric transformation models for right censored failure time data, (3) studying semiparametric transformation models for the analysis of univariate and multivariate failure time data subject to interval censoring, (4) pursuing statistically efficient and computationally feasible procedures for the analysis of accelerated failure time and accelerated hazards models with right censored data, (5) investigating variance-components models for the joint linkage and association analysis of complex disease traits in family studies, (6) handling complex data structures (e.g., family data, selective genotyping, and correlated genetic and environmental factors with missing values) in the analysis of haplotype-disease associations, and (7) addressing the issue of population stratification in genetic association studies of unrelated individuals. All these problems are motivated by the principal investigator's applied research experiences and are highly relevant to current cancer research. The proposed solutions are based on likelihood and other sound statistical principles. The large-sample properties of the new estimators and test statistics will be established rigorously via modern empirical process theory and semiparametric efficiency theory. Efficient and reliable numerical algorithms will be developed to implement the inference procedures. The proposed methods will be evaluated extensively through computer simulation and be applied to a large number of cancer studies, most of which are carried out at the University of North Carolina. User-friendly software will be freely available to the general public. This research will not only significantly advance the fields of survival analysis, longitudinal data analysis and statistical genetics, but will also provide valuable new tools to cancer researchers. PUBLIC HEALTH RELEVANCE: The broad, long-term objectives of this research are the developments of statistical methods for the designs and analysis of clinical and epidemiological cancer studies, with or without genetic components.
描述(由申请人提供):本研究的广泛、长期目标是开发用于临床和流行病学癌症研究设计和分析的统计方法,无论是否包含遗传成分。这一竞争性续期申请的具体目标包括:(1)探索单变量和多变量连续响应变量的半参数线性变换模型;(2)发展图形化和数值化技术来评估右截后失效时间数据半参数变换模型下的模型充分性和预测精度;(3)研究区间截后单变量和多变量失效时间数据分析的半参数变换模型。(4)追求统计上有效和计算上可行的程序,用于分析具有正确审查数据的加速失效时间和加速危害模型;(5)研究方差成分模型,用于家庭研究中复杂疾病特征的联合连锁和关联分析;(6)处理复杂的数据结构(例如,家庭数据,选择性基因分型,(7)在无亲缘关系个体的遗传关联研究中解决群体分层问题。所有这些问题都是由首席研究员的应用研究经验激发的,并且与当前的癌症研究高度相关。提出的解决方案是基于似然和其他合理的统计原则。新的估计量和检验统计量的大样本性质将通过现代经验过程理论和半参数效率理论严格地建立起来。将开发高效可靠的数值算法来实现推理程序。提出的方法将通过计算机模拟进行广泛评估,并应用于大量的癌症研究,其中大部分是在北卡罗来纳大学进行的。用户友好的软件将免费提供给公众。这项研究不仅将显著推动生存分析、纵向数据分析和统计遗传学领域的发展,而且将为癌症研究人员提供有价值的新工具。公共卫生相关性:本研究的广泛和长期目标是开发用于设计和分析临床和流行病学癌症研究的统计方法,无论是否包含遗传成分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DANYU LIN其他文献

DANYU LIN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DANYU LIN', 18)}}的其他基金

Semiparametric Analysis of Big Censored Data
大删失数据的半参数分析
  • 批准号:
    10391489
  • 财政年份:
    2020
  • 资助金额:
    $ 23.65万
  • 项目类别:
Semiparametric Analysis of Big Censored Data
大删失数据的半参数分析
  • 批准号:
    10615672
  • 财政年份:
    2020
  • 资助金额:
    $ 23.65万
  • 项目类别:
Project 3: Statistical/Computational Methods for Pharmacogenomics and Individuali
项目3:药物基因组学和个体的统计/计算方法
  • 批准号:
    8794728
  • 财政年份:
    2010
  • 资助金额:
    $ 23.65万
  • 项目类别:
Methods for Pharmacogenomics and Individualized Therapy Trails
药物基因组学方法和个体化治疗试验
  • 批准号:
    7786682
  • 财政年份:
    2010
  • 资助金额:
    $ 23.65万
  • 项目类别:
STATISTICAL METHODS IN CURRENT CANCER RESEARCH
当前癌症研究中的统计方法
  • 批准号:
    6377395
  • 财政年份:
    2000
  • 资助金额:
    $ 23.65万
  • 项目类别:
STATISTICAL METHODS IN CURRENT CANCER RESEARCH
当前癌症研究中的统计方法
  • 批准号:
    6131586
  • 财政年份:
    2000
  • 资助金额:
    $ 23.65万
  • 项目类别:
Statistical Methods in Current Cancer Research
当前癌症研究中的统计方法
  • 批准号:
    6870163
  • 财政年份:
    2000
  • 资助金额:
    $ 23.65万
  • 项目类别:
Statistical Methods in Trans-Omics Chronic Disease Research
跨组学慢性病研究的统计方法
  • 批准号:
    10329975
  • 财政年份:
    2000
  • 资助金额:
    $ 23.65万
  • 项目类别:
Statistical Methods in Chronic Disease Research
慢性病研究中的统计方法
  • 批准号:
    8438778
  • 财政年份:
    2000
  • 资助金额:
    $ 23.65万
  • 项目类别:
Statistical Methods in Cancer Research
在癌症研究中的统计方法
  • 批准号:
    7469321
  • 财政年份:
    2000
  • 资助金额:
    $ 23.65万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 23.65万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 23.65万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 23.65万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 23.65万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 23.65万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 23.65万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 23.65万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 23.65万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 23.65万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.65万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了