Project 3: Statistical/Computational Methods for Pharmacogenomics and Individuali
项目3:药物基因组学和个体的统计/计算方法
基本信息
- 批准号:8794728
- 负责人:
- 金额:$ 46.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdverse eventAlgorithmsAllelesApplied ResearchBiologicalBiological MarkersCancer PatientCessation of lifeCharacteristicsClinicalClinical TrialsCollaborationsCommunitiesComplexComputing MethodologiesConstitutionDNADNA MethylationDataDiseaseEventFundingGeneral PopulationGenesGeneticGenetic DeterminismGenetic TranscriptionGenomicsHeterogeneityHypertensionLeadLearningLongevityMachine LearningMalignant NeoplasmsMeasurementMethodsMethylationMicroRNAsNeuropathyNeutropeniaNorth CarolinaOutcomePathway interactionsPatientsPharmaceutical PreparationsPharmacogenomicsPharmacotherapyPloidiesPoint MutationProceduresProcessPropertyRNAResearchResearch DesignResearch PersonnelSamplingSchemeSolutionsSomatic MutationStatistical MethodsTechniquesTherapy trialTimeToxic effectTreatment ProtocolsUncertaintyUniversitiesVariantWorkbasecomputerized toolsdata miningdesignexome sequencingexperiencegenetic variantgenome-wideimprovedindividualized medicineinterestneoplastic cellnovelprotein expressionrare variantresearch and developmentresponsesimulationsoundtheoriestooltreatment responsetrial designtumoruser friendly software
项目摘要
Project 3: Statistical/Computational Methods for Pharmacogenomics and Indi-
vidualized Therapy
PROJECT SUMMARY
The broad, long-term objectives of this research are the development of novel and high-impact statistical and
computational tools for discovering genetic variants associated with interindividual differences in the efficacy
and toxicity of cancer medications and for optimizing drug therapy on the basis of each patient's genetic consti-
tution. The specific aims of this renewal application include: (1) investigating statistical methods to assess the
effects of DNA variations on the occurrence of adverse clinical events (e.g., neuropathy, neutropenia and hyper-
tension) in cancer clinical trials under complex censoring and sampling schemes; (2) exploring statistical tools
to integrate multiple types of genomics data (e.g., copy number alteration, point mutation, DNA methylation,
RNA and microRNA expressions, and protein expressions) in understanding the influence of genomic profile on
treatment response; (3) pursuing statistical methods to discern tumor cell subclones and to relate intra-tumor
heterogeneity to clinical outcomes; and (4) developing machine learning techniques to discover and validate
biomarkers that can distinguish groups of patients with different treatment response. All of these aims have
been motivated by the investigators' applied research experiences and address the most timely and important
issues in pharmacogenomics and individualized therapy. The proposed solutions are built on sound statistical
and data-mining principles. The theoretical properties of the new methods will be established rigorously via
modern empirical process theory and other advanced mathematical arguments. Efficient and stable numerical
algorithms will be devised to implement the new methods. Extensive simulation studies will be conducted to
evaluate the operating characteristics of the new inferential and numerical procedures in realistic settings. Ap-
plications will be provided to a large number of cancer studies, most of which are carried out at Duke University
(Duke) and the University of North Carolina at Chapel Hill (UNC-CH). In collaboration with Core B, practical
and user-friendly software will be developed and disseminated freely to the general public. This research will
change the ways pharmacogenomic studies and individualized therapy trials are designed and analyzed, which
will lead to optimal treatments for patients in cancer and other diseases.
项目3:药物基因组学和Indi的统计/计算方法
虚拟化治疗
项目摘要
这项研究的广泛,长期目标是开发新颖和高影响力的统计和
用于发现与疗效个体间差异相关的遗传变异的计算工具
和癌症药物的毒性,并根据每个患者的遗传结构优化药物治疗,
学费。本次更新申请的具体目的包括:(1)调查统计方法,以评估
DNA变异对不良临床事件发生的影响(例如,神经病变、中性粒细胞减少症和高
张力)在癌症临床试验中的复杂删失和抽样方案;(2)探索统计工具
为了整合多种类型的基因组学数据(例如,拷贝数改变,点突变,DNA甲基化,
RNA和microRNA表达,以及蛋白质表达),以了解基因组图谱对
治疗反应;(3)采用统计学方法识别肿瘤细胞亚克隆,并将肿瘤内
临床结果的异质性;(4)开发机器学习技术,以发现和验证
这些生物标志物可以区分具有不同治疗反应的患者组。所有这些目标都有
受研究人员的应用研究经验的激励,并解决最及时和最重要的问题。
药物基因组学和个体化治疗的问题。拟议的解决方案建立在可靠的统计数据之上
和数据挖掘原理。新方法的理论特性将通过以下方式严格建立:
现代经验过程理论和其他先进的数学论证。高效稳定的数值计算
将设计算法来实施新方法。将进行广泛的模拟研究,
评估新的推理和数值程序在现实环境中的操作特性。Ap-
将为大量癌症研究提供应用程序,其中大部分是在杜克大学进行的
(杜克)和查佩尔山的北卡罗来纳州大学(UNC-CH)。与核心B合作,实用
并将开发方便用户的软件,免费向公众分发。这项研究将
改变药物基因组学研究和个体化治疗试验的设计和分析方式,
将为癌症和其他疾病的患者带来最佳治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANYU LIN其他文献
DANYU LIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANYU LIN', 18)}}的其他基金
Methods for Pharmacogenomics and Individualized Therapy Trails
药物基因组学方法和个体化治疗试验
- 批准号:
7786682 - 财政年份:2010
- 资助金额:
$ 46.13万 - 项目类别:
Statistical Methods in Trans-Omics Chronic Disease Research
跨组学慢性病研究的统计方法
- 批准号:
10329975 - 财政年份:2000
- 资助金额:
$ 46.13万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 46.13万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 46.13万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 46.13万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 46.13万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 46.13万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 46.13万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 46.13万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 46.13万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 46.13万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 46.13万 - 项目类别:
Research Grant














{{item.name}}会员




