STATISTICAL METHODS IN CURRENT CANCER RESEARCH
当前癌症研究中的统计方法
基本信息
- 批准号:6377395
- 负责人:
- 金额:$ 16.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-04-01 至 2004-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (Adapted from the Applicant's Abstract): The broad, long-term
objectives of this research are the developments of simple and useful
statistical methods for the design and analysis of clinical and epidemiologic
cancer studies with incomplete observations. The specific aims include (1)
investigation of semi-parametric regression methods for assessing the effects
of covariates (e.g., cancer therapy and patient characteristics) on medical
cost and quality-adjusted lifetime based on incomplete follow-up data, (2)
construction of non- and semi-parametric methods for the joint analysis of
incomplete repeated measures (e.g., serial quality-of-life measures) and
censored failure times (e.g., times to cancer recurrence/death) from
longitudinal cancer studies, and (3) exploration of efficient methods of design
and analysis for two-phase survival studies (e.g., case-cohort studies, sample
surveys and covariate measurement error problems). The proposed statistical
models and inference procedures are built from but extend significantly the
current knowledge about the analysis of censored failure time data and
incomplete repeated measures. These models are highly flexible and versatile in
that they do not require specifying the distributional form of any random
variable or the dependence structure between any two related outcome measures.
The asymptotic properties of the proposed estimators and test statistics will
be investigated rigorously with the use of counting-process martingale theory,
modern empirical process theory and other probability tools. Their operating
characteristics in practical settings will be evaluated extensively through
computer simulations. The usefulness of the proposed methods will be
illustrated with real cancer studies. The research results will be disseminated
to practicing statisticians and medical investigators via publications,
lectures and software distributions.
描述(改编自申请人的摘要):
本研究的目的是开发简单实用的
临床和流行病学设计和分析的统计方法
癌症研究,观察不完整。具体目标包括:(1)
评估影响的半参数回归方法的研究
协变量(例如,癌症治疗和患者特征)
基于不完整随访数据的成本和质量调整寿命,(2)
非参数和半参数方法的构造
不完整的重复测量(例如,系列生活质量测量)和
删失的故障时间(例如,至癌症复发/死亡的时间)
纵向癌症研究,(3)探索有效的设计方法
以及用于两阶段存活研究的分析(例如,病例队列研究,样本
调查和协变量测量误差问题)。拟定的统计
模型和推理程序是建立在,但大大扩展了
当前关于截尾失效时间数据分析的知识,
不完整的重复措施。这些型号具有高度灵活性和通用性,
它们不需要指定任何随机变量的分布形式,
变量或任何两个相关结果测量之间的依赖结构。
所提出的估计量和检验统计量的渐近性质将
用计数过程鞅理论进行严格的研究,
现代经验过程理论和其他概率工具。其操作
将通过以下方式广泛评估实际环境中的特性:
计算机模拟所提出的方法的实用性将是
用真实的癌症研究来说明。研究成果将在
通过出版物提供给执业统计学家和医学研究人员,
讲座和软件分发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANYU LIN其他文献
DANYU LIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANYU LIN', 18)}}的其他基金
Project 3: Statistical/Computational Methods for Pharmacogenomics and Individuali
项目3:药物基因组学和个体的统计/计算方法
- 批准号:
8794728 - 财政年份:2010
- 资助金额:
$ 16.24万 - 项目类别:
Methods for Pharmacogenomics and Individualized Therapy Trails
药物基因组学方法和个体化治疗试验
- 批准号:
7786682 - 财政年份:2010
- 资助金额:
$ 16.24万 - 项目类别:
Statistical Methods in Trans-Omics Chronic Disease Research
跨组学慢性病研究的统计方法
- 批准号:
10329975 - 财政年份:2000
- 资助金额:
$ 16.24万 - 项目类别:
相似海外基金
Collaborative Research: HNDS-I:SweetPea: Automating the Implementation and Documentation of Unbiased Experimental Designs
合作研究:HNDS-I:SweetPea:自动化无偏实验设计的实施和记录
- 批准号:
2318548 - 财政年份:2023
- 资助金额:
$ 16.24万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I:SweetPea: Automating the Implementation and Documentation of Unbiased Experimental Designs
合作研究:HNDS-I:SweetPea:自动化无偏实验设计的实施和记录
- 批准号:
2318550 - 财政年份:2023
- 资助金额:
$ 16.24万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I:SweetPea: Automating the Implementation and Documentation of Unbiased Experimental Designs
合作研究:HNDS-I:SweetPea:自动化无偏实验设计的实施和记录
- 批准号:
2318549 - 财政年份:2023
- 资助金额:
$ 16.24万 - 项目类别:
Standard Grant
Optimal experimental designs and response-adaptive designs
最佳实验设计和响应自适应设计
- 批准号:
RGPIN-2018-06452 - 财政年份:2022
- 资助金额:
$ 16.24万 - 项目类别:
Discovery Grants Program - Individual
Optimal Experimental Designs and Response Surface Optimization
最佳实验设计和响应面优化
- 批准号:
RGPIN-2020-06745 - 财政年份:2022
- 资助金额:
$ 16.24万 - 项目类别:
Discovery Grants Program - Individual
Optimal Experimental Designs and Response Surface Optimization
最佳实验设计和响应面优化
- 批准号:
RGPIN-2020-06745 - 财政年份:2021
- 资助金额:
$ 16.24万 - 项目类别:
Discovery Grants Program - Individual
Optimal experimental designs and response-adaptive designs
最佳实验设计和响应自适应设计
- 批准号:
RGPIN-2018-06452 - 财政年份:2021
- 资助金额:
$ 16.24万 - 项目类别:
Discovery Grants Program - Individual
Optimal Experimental Designs and Response Surface Optimization
最佳实验设计和响应面优化
- 批准号:
RGPIN-2020-06745 - 财政年份:2020
- 资助金额:
$ 16.24万 - 项目类别:
Discovery Grants Program - Individual
Optimal experimental designs and response-adaptive designs
最佳实验设计和响应自适应设计
- 批准号:
RGPIN-2018-06452 - 财政年份:2020
- 资助金额:
$ 16.24万 - 项目类别:
Discovery Grants Program - Individual
Optimal experimental designs and response-adaptive designs
最佳实验设计和响应自适应设计
- 批准号:
RGPIN-2018-06452 - 财政年份:2019
- 资助金额:
$ 16.24万 - 项目类别:
Discovery Grants Program - Individual