Statistical Methods in Trans-Omics Chronic Disease Research
跨组学慢性病研究的统计方法
基本信息
- 批准号:10329975
- 负责人:
- 金额:$ 30.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-04-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAlgorithmsApplied ResearchBiologicalCardiovascular DiseasesCharacteristicsChronic DiseaseCommunitiesComplexComputer softwareDNA SequenceDataData SetDerivation procedureDiagnosisDimensionsDiseaseDocumentationEquationFormulationGene ExpressionGenesGenetic CodeGenetic TranscriptionGenomicsGoalsGrantInformation NetworksInstitutionInter-tumoral heterogeneityJointsKnowledgeMalignant NeoplasmsMathematicsMeasurementMedicalMedicineMental disordersMethodsMethylationModelingModernizationMolecularMolecular AbnormalityMolecular ProfilingMutationMutation AnalysisNational Human Genome Research InstituteNorth CarolinaPatientsPatternPrecision Medicine InitiativePreventionProceduresProcessPropertyPublic HealthResearchResearch PersonnelResourcesSomatic MutationStatistical MethodsSymptomsSystemTailTechnologyTestingThe Cancer Genome AtlasTrans-Omics for Precision MedicineUnited StatesUnited States National Institutes of HealthUniversitiesWorkbasedetection limitdisease phenotypedriver mutationexperiencegene interactiongenome sequencinghigh dimensionalityinnovationmachine learning methodmetabolomicsmultidimensional datamultiple omicsnovelopen sourceoutcome predictionpersonalized careprecision medicineprogramsprotein expressionresearch and developmentsemiparametricsimulationsoundstatistical learningstatisticstheoriestooltumortumor heterogeneityuser-friendly
项目摘要
Project Summary
The broad, long-term objectives of this research are the development of novel and high-impact statistical methods
for medical studies of chronic diseases, with a focus on trans-omics precision medicine research. The specific
aims of this competing renewal application include: (1) derivation of efficient and robust statistics for integrative
association analysis of multiple omics platforms (DNA sequences, RNA expressions, methylation profiles, protein
expressions, metabolomics profiles, etc.) with arbitrary patterns of missing data and with detection limits for
quantitative measurements; (2) exploration of statistical learning approaches for handling multiple types of high-
dimensional omics variables with structural associations and with substantial missing data; and (3) construction
of a multivariate regression model of the effects of somatic mutations on gene expressions in cancer tumors for
discovery of subject-specific driver mutations, leveraging gene interaction network information and accounting for
inter-tumor heterogeneity in mutational effects. All these aims have been motivated by the investigators' applied
research experience in trans-omics studies of cancer and cardiovascular diseases. The proposed solutions are
based on likelihood and other sound statistical principles. The theoretical properties of the new statistical methods
will be rigorously investigated through innovative use of advanced mathematical arguments. Computationally
efficient and numerically stable algorithms will be developed to implement the inference procedures. The new
methods will be evaluated extensively with simulation studies that mimic real data and applied to several ongoing
trans-omics precision medicine projects, most of which are carried out at the University of North Carolina at
Chapel Hill. Their scientific merit and computational feasibility are demonstrated by preliminary simulation results
and real examples. Efficient, reliable, and user-friendly open-source software with detailed documentation will
be produced and disseminated to the broad scientific community. The proposed work will advance the field of
statistical genomics and facilitate trans-omics precision medicine studies of chronic diseases.
项目摘要
这项研究的广泛和长期目标是开发新的和高影响力的统计方法
用于慢性疾病的医学研究,重点是跨组学精准医学研究。该物种fic
这一竞争性更新应用程序的目标包括:(1)推导出有效和稳健的综合统计数据fi
多个组学平台的关联分析(脱氧核糖核酸序列、核糖核酸表达、甲基化前体fiLES、蛋白质
表达、代谢组学ProfiLES等)具有任意模式的丢失数据,并且具有
定量测量;(2)探索处理多种类型高风险的统计学习方法。
具有结构关联性和大量缺失数据的维度组学变量;以及(3)结构
建立体细胞突变对肿瘤基因表达影响的多元回归模型
发现特定于主体的fic驱动程序突变,利用基因相互作用网络信息并解释
肿瘤间突变效应的异质性。所有这些目标都是由调查人员的申请推动的
在癌症和心血管疾病的跨组研究方面的研究经验。建议的解决方案是
基于可能性和其他合理的统计原理。新统计方法的理论性质
将通过创新地使用先进的数学论证进行严格的调查。从计算上讲
将开发EFfi有效且数值稳定的算法来实现推理过程。新的
这些方法将通过模拟真实数据的模拟研究进行广泛评估,并应用于几个正在进行的
跨组学精准医学项目,其中大部分是在北卡罗来纳大学进行的
教堂山。初步的模拟结果证明了该方法的科学性和计算的可行性。
和真实的例子。EFfi有效、可靠、用户友好的开源软件以及详细的文档将
将被制作并传播给广泛的科学fic社区。拟议的工作将推进fi领域的发展
统计基因组学和促进慢性疾病的跨组学精准医学研究。
项目成果
期刊论文数量(137)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inherited causes of clonal haematopoiesis in 97,691 whole genomes.
- DOI:10.1038/s41586-020-2819-2
- 发表时间:2020-10
- 期刊:
- 影响因子:64.8
- 作者:Bick AG;Weinstock JS;Nandakumar SK;Fulco CP;Bao EL;Zekavat SM;Szeto MD;Liao X;Leventhal MJ;Nasser J;Chang K;Laurie C;Burugula BB;Gibson CJ;Lin AE;Taub MA;Aguet F;Ardlie K;Mitchell BD;Barnes KC;Moscati A;Fornage M;Redline S;Psaty BM;Silverman EK;Weiss ST;Palmer ND;Vasan RS;Burchard EG;Kardia SLR;He J;Kaplan RC;Smith NL;Arnett DK;Schwartz DA;Correa A;de Andrade M;Guo X;Konkle BA;Custer B;Peralta JM;Gui H;Meyers DA;McGarvey ST;Chen IY;Shoemaker MB;Peyser PA;Broome JG;Gogarten SM;Wang FF;Wong Q;Montasser ME;Daya M;Kenny EE;North KE;Launer LJ;Cade BE;Bis JC;Cho MH;Lasky-Su J;Bowden DW;Cupples LA;Mak ACY;Becker LC;Smith JA;Kelly TN;Aslibekyan S;Heckbert SR;Tiwari HK;Yang IV;Heit JA;Lubitz SA;Johnsen JM;Curran JE;Wenzel SE;Weeks DE;Rao DC;Darbar D;Moon JY;Tracy RP;Buth EJ;Rafaels N;Loos RJF;Durda P;Liu Y;Hou L;Lee J;Kachroo P;Freedman BI;Levy D;Bielak LF;Hixson JE;Floyd JS;Whitsel EA;Ellinor PT;Irvin MR;Fingerlin TE;Raffield LM;Armasu SM;Wheeler MM;Sabino EC;Blangero J;Williams LK;Levy BD;Sheu WH;Roden DM;Boerwinkle E;Manson JE;Mathias RA;Desai P;Taylor KD;Johnson AD;NHLBI Trans-Omics for Precision Medicine Consortium;Auer PL;Kooperberg C;Laurie CC;Blackwell TW;Smith AV;Zhao H;Lange E;Lange L;Rich SS;Rotter JI;Wilson JG;Scheet P;Kitzman JO;Lander ES;Engreitz JM;Ebert BL;Reiner AP;Jaiswal S;Abecasis G;Sankaran VG;Kathiresan S;Natarajan P
- 通讯作者:Natarajan P
Efficient Estimation for Semiparametric Structural Equation Models With Censored Data.
具有删失数据的半参数结构方程模型的有效估计。
- DOI:10.1080/01621459.2017.1299626
- 发表时间:2018
- 期刊:
- 影响因子:3.7
- 作者:Wong,KinYau;Zeng,Donglin;Lin,DY
- 通讯作者:Lin,DY
Whole-exome sequence analysis of anthropometric traits illustrates challenges in identifying effects of rare genetic variants.
- DOI:10.1016/j.xhgg.2022.100163
- 发表时间:2023-01-12
- 期刊:
- 影响因子:0
- 作者:Young, Kristin L.;Fisher, Virginia;Deng, Xuan;Brody, Jennifer A.;Graff, Misa;Lim, Elise;Lin, Bridget M.;Xu, Hanfei;Amin, Najaf;An, Ping;Aslibekyan, Stella;Fohner, Alison E.;Hidalgo, Bertha;Lenzini, Petra;Kraaij, Robert;Medina-Gomez, Carolina;Prokic, Ivana;Rivadeneira, Fernando;Sitlani, Colleen;Tao, Ran;van Rooij, Jeroen;Zhang, Di;Broome, Jai G.;Buth, Erin J.;Heavner, Benjamin D.;Jain, Deepti;Smith, Albert, V;Barnes, Kathleen;Boorgula, Meher Preethi;Chavan, Sameer;Darbar, Dawood;De Andrade, Mariza;Guo, Xiuqing;Haessler, Jeffrey;Irvin, Marguerite R.;Kalyani, Rita R.;Kardia, Sharon L. R.;Kooperberg, Charles;Kim, Wonji;Mathias, Rasika A.;McDonald, Merry-Lynn;Mitchell, Braxton D.;Peyser, Patricia A.;Regan, Elizabeth A.;Redline, Susan;Reiner, Alexander P.;Rich, Stephen S.;Rotter, Jerome I.;Smith, Jennifer A.;Weiss, Scott;Wiggins, Kerri L.;Yanek, Lisa R.;Arnett, Donna;Heard-Costa, Nancy L.;Leal, Suzanne;Lin, Danyu;McKnight, Barbara;Province, Michael;van Duijn, Cornelia M.;North, Kari E.;Cupples, L. Adrienne;Liu, Ching-Ti
- 通讯作者:Liu, Ching-Ti
Sample size/power calculation for stratified case-cohort design.
分层病例队列设计的样本量/功效计算。
- DOI:10.1002/sim.6215
- 发表时间:2014
- 期刊:
- 影响因子:2
- 作者:Hu,Wenrong;Cai,Jianwen;Zeng,Donglin
- 通讯作者:Zeng,Donglin
SEMIPARAMETRIC TRANSFORMATION MODELS WITH RANDOM EFFECTS FOR CLUSTERED FAILURE TIME DATA.
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:1.4
- 作者:D. Zeng;Danyu Lin;Xihong Lin
- 通讯作者:D. Zeng;Danyu Lin;Xihong Lin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANYU LIN其他文献
DANYU LIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANYU LIN', 18)}}的其他基金
Project 3: Statistical/Computational Methods for Pharmacogenomics and Individuali
项目3:药物基因组学和个体的统计/计算方法
- 批准号:
8794728 - 财政年份:2010
- 资助金额:
$ 30.52万 - 项目类别:
Methods for Pharmacogenomics and Individualized Therapy Trails
药物基因组学方法和个体化治疗试验
- 批准号:
7786682 - 财政年份:2010
- 资助金额:
$ 30.52万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 30.52万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 30.52万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 30.52万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 30.52万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 30.52万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 30.52万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 30.52万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 30.52万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 30.52万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 30.52万 - 项目类别:
Research Grant