Methods for Pharmacogenomics and Individualized Therapy Trails
药物基因组学方法和个体化治疗试验
基本信息
- 批准号:7786682
- 负责人:
- 金额:$ 27.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-01 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse eventAlgorithmsApplied ResearchCancer PatientCancer and Leukemia Group BCharacteristicsClassificationClinicalClinical ResearchClinical TrialsClinical Trials DesignCommunitiesComplexConstitutionDataDevelopmentDiseaseDisease ProgressionEquilibriumGene ExpressionGeneral PopulationGenesGeneticGenetic DeterminismGenomicsGenotypeHaplotypesIndividualIndividual DifferencesInvestigationLeadLearningLongevityMachine LearningMalignant NeoplasmsMeasuresMethodsModelingNorth CarolinaOutcomePSA levelPathway interactionsPatientsPharmaceutical PreparationsPharmacogenomicsPharmacotherapyPhenotypePopulationProceduresProcessPropertyPublic HealthReproducibilityResearchResearch PersonnelSNP genotypingSolutionsStatistical MethodsStratificationStructureTechniquesTestingTimeToxic effectTreatment ProtocolsUniversitiesbasecancer therapycomputerized toolsdata miningdesignexperienceflexibilityfollow-upgenetic variantimprovedinterestnovelpre-clinicalpreclinical studyresearch and developmentresponsesimulationsoundtheoriestime intervaltooluser friendly software
项目摘要
The broad, long-term objectives of this research are the development of novel and high-impact statistical and
computational tools for discovering genetic variants associated with inter-individual differences in the efficacy
and toxicity of cancer medications and for optimizing drug therapy on the basis of each patient's genetic
constitution. The specific aims include: (1) construction of robust and efficient statistical methods for
assessing the effects of SNP genotypes and haplotypes on drug response with a variety of phenotypes (e.g.,
binary and continuous measures of efficacy and toxicity, right-censored survival time, interval-censored time
tp disease progression, and informatively censored PSA levels and adverse events); (2) development of
statistical and data-mining techniques for predicting drug response based on high-dimensional, highly
correlated genomic data and complex phenotypes; (3) investigation of statistical procedures for
providing low-bias estimation of effect sizes with complex and highly multivariate genetic data for follow-up
and confirmation studies; (4) exploration of a new form of machine learning for identifying candidate
individualized therapies in both pre-clinical studies and clinical trials. All these aims have been motivated by
the investigators' applied research experiences and address the most timely and important issues in
pharmacogenomics and individualized therapy. The proposed solutions are built on sound statistical and
data-mining principles. The theoretical properties of the new methods will be established rigorously via
modern empirical process theory and other advanced mathematical arguments. Efficient and stable
numerical algorithms will be devised to implement the new methods. Extensive simulation studies will be
conducted to evaluate the operating characteristics of the new inferential and numerical procedures in
realistic settings. Applications will be provided to a large number of cancer studies, most of which are carried
out at Duke University and the University of North Carolina at Chapel Hill. Practical and user-friendly
software will be developed and disseminated freely to the general public. Our research will change the ways
pharmacogenomic studies and individualized therapy trials are designed and analyzed, which will lead to
optimal treatments for patients in cancer and other diseases.
这项研究的广泛,长期目标是开发新颖和高影响力的统计和
用于发现与疗效个体间差异相关的遗传变异的计算工具
和毒性,并根据每个患者的遗传特征优化药物治疗
宪法具体目标包括:(1)构建稳健高效的统计方法,
评估SNP基因型和单倍型对具有多种表型的药物应答的影响(例如,
疗效和毒性的二进制和连续测量、右删失生存时间、区间删失时间
tp疾病进展,以及信息性删失的PSA水平和不良事件);(2)
统计和数据挖掘技术,用于预测药物反应的基础上,高维,高度
相关的基因组数据和复杂的表型;(3)调查统计程序,
为随访提供复杂和高度多变量遗传数据的效应量的低偏倚估计
和确认研究;(4)探索一种新的机器学习形式来识别候选人
临床前研究和临床试验中的个体化治疗。所有这些目标的动机都是
研究人员的应用研究经验,并解决最及时和最重要的问题,
药物基因组学和个体化治疗。拟议的解决方案是建立在健全的统计和
数据挖掘原则。新方法的理论特性将通过以下方式严格建立:
现代经验过程理论和其他先进的数学论证。高效稳定
将设计数值算法来实施新方法。广泛的模拟研究将
进行评估的新的推理和数值程序的操作特点,
现实的设置。申请将提供给大量的癌症研究,其中大部分是进行
在杜克大学和查佩尔山的北卡罗来纳州大学。实用和用户友好
将开发软件并免费向公众分发。我们的研究将改变
药物基因组学研究和个体化治疗试验的设计和分析,这将导致
癌症和其他疾病患者的最佳治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANYU LIN其他文献
DANYU LIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANYU LIN', 18)}}的其他基金
Project 3: Statistical/Computational Methods for Pharmacogenomics and Individuali
项目3:药物基因组学和个体的统计/计算方法
- 批准号:
8794728 - 财政年份:2010
- 资助金额:
$ 27.75万 - 项目类别:
Statistical Methods in Trans-Omics Chronic Disease Research
跨组学慢性病研究的统计方法
- 批准号:
10329975 - 财政年份:2000
- 资助金额:
$ 27.75万 - 项目类别:
相似海外基金
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 27.75万 - 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
- 批准号:
479728 - 财政年份:2023
- 资助金额:
$ 27.75万 - 项目类别:
Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
- 批准号:
10884567 - 财政年份:2023
- 资助金额:
$ 27.75万 - 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
- 批准号:
10751964 - 财政年份:2023
- 资助金额:
$ 27.75万 - 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
- 批准号:
486321 - 财政年份:2022
- 资助金额:
$ 27.75万 - 项目类别:
Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10676786 - 财政年份:2022
- 资助金额:
$ 27.75万 - 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10440970 - 财政年份:2022
- 资助金额:
$ 27.75万 - 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
- 批准号:
10642998 - 财政年份:2022
- 资助金额:
$ 27.75万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10482465 - 财政年份:2022
- 资助金额:
$ 27.75万 - 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
- 批准号:
10191053 - 财政年份:2020
- 资助金额:
$ 27.75万 - 项目类别:














{{item.name}}会员




