HYDROLASE STABILITY ENHANCEMENT AND ITS APPLICATION TO SIRNA

水解酶稳定性增强及其在 SIRNA 中的应用

基本信息

  • 批准号:
    8360149
  • 负责人:
  • 金额:
    $ 10.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Enzymes play an essential role in biotechnology where they are used to catalyze a broad range of biorelevant reactions.However enzymes exhibit poor stability, that is, their catalytic activity decreases drastically with prolonged exposure to aqueous or organic solvents. This limitation and the poor understanding of the relationship between stability, structure,and function severely limits the potential of enzymes. The main objectives of this research are to fully understand and enhance enzyme stability. Our studies show that poor enzyme stability is inherently due to minute but critical changes that occur in the active site during solvent exposure. Experimental and theoretical studies will determine the nature of these critical changes and establish causal relationships between these changes and enzyme stability. Novel methodologies will be developed to reduce the changes with in the active site during prolonged solvent exposure in order to enhance enzyme stability. The technical expertise and understanding gained in the study of enzyme stability will be applied to surpass a similar limitations faced by siRNAs. Short interfering RNAs are short double-stranded nucleic acids that are being developed to target therapeuticaly important genes in cancer, viral infections, and other diseases. These siRNA will be chemically modified with a variety of macromolecules to increase their stability and efficiency, and to increase their ability to cross a cell wall membrane. New techniques will be designed to directly measure siRNA stability in complex biological fluids. Proposed Specific Aims (SA): SA1: Study the enzyme's operational stability in terms of the role of the enzyme reversibly bound water and enzyme dynamics. The exchange of reversibly bound water molecules with the bulk of an organic solvent will be studied using nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). The effect of long term enzyme incubation in an organic solvent as well as the effect of organic solvent hydration on enzyme polarity will be measured using EPR. Molecular dynamics simulation of an EPR spin-label and of the reversibly bound waters and solvent molecules near the active site will complement the experimental study. SA2: Enhance the stability of enzymes in organic solvents by immobilizing the enzyme on polar and hydrophilic surfaces of materials such as nanosilicates, to ensure proper enzyme hydration and stability. Enzyme stability determination on different surfaces will show correlation or causation between stability and overall hydration state of the enzyme. Molecular and quantum-mechanical dynamics simulation of the solvent-enzyme-material interface will suggest a hydration mechanism regarding surface water molecule movementand clustering. SA3: Modify systematically and rationally a pre-designed siRNA by co-lyophilization and chemical modification with a variety of macromolecules such as methoxy poly(ethylene glycol) (PEG) and cyclodextrins. HeLa cells will be transfected with these modified siRNA to knockdown a specific gene expression and evaluate possible increase to their stability, efficiency, and ability to cross the cell wall membrane. This study will provide physical and chemical insights into the mechanisms of siRNA stability and cell membrane transfer. Molecular dynamics simulation will be used to determine structural differences between modified and natural siRNA. SA4: Design new techniques involving our expertise with Forster resonance energy transfer (FRET), EPR and fluorine NMR to directly measure single-strand and duplex siRNA nucleolytic stability in complex biological fluids such as blood plasma, extra- cellular matrix components and cellular cytoplasm.
这个子项目是许多利用资源的研究子项目之一 由NIH/NCRR资助的中心拨款提供。子项目的主要支持 而子项目的主要调查员可能是由其他来源提供的, 包括其它NIH来源。 列出的子项目总成本可能 代表子项目使用的中心基础设施的估计数量, 而不是由NCRR赠款提供给子项目或子项目工作人员的直接资金。 酶在生物技术中起着重要的作用,被用于催化许多生物相关的反应,但酶的稳定性较差,即酶的催化活性随着与水或有机溶剂接触时间的延长而急剧下降。这种局限性以及对稳定性、结构和功能之间关系的理解不足严重限制了酶的潜力。本研究的主要目的是充分了解和提高酶的稳定性。我们的研究表明,差的酶稳定性本质上是由于在溶剂暴露期间活性位点发生的微小但关键的变化。实验和理论研究将确定这些关键变化的性质,并建立这些变化和酶稳定性之间的因果关系。将开发新的方法来减少活性位点在长时间溶剂暴露期间的变化,以提高酶的稳定性。在酶稳定性研究中获得的技术专长和理解将被应用于超越siRNA面临的类似限制。短干扰RNA是正在开发的短双链核酸,其靶向癌症、病毒感染和其他疾病中的治疗重要基因。这些siRNA将用各种大分子进行化学修饰,以增加其稳定性和效率,并增加其穿过细胞壁膜的能力。将设计新技术来直接测量siRNA在复杂生物流体中的稳定性。 具体目标(SA): SA 1:从酶可逆结合水的作用和酶动力学的角度研究酶的操作稳定性。将使用核磁共振(NMR)和电子顺磁共振(EPR)研究可逆结合水分子与有机溶剂的交换。将使用EPR测量在有机溶剂中长期酶孵育的影响以及有机溶剂水合对酶极性的影响。EPR自旋标记和可逆结合的沃茨和溶剂分子附近的活性位点的分子动力学模拟将补充实验研究。 SA2:通过将酶固定在材料(如纳米硅酸盐)的极性和亲水性表面上来增强酶在有机溶剂中的稳定性,以确保适当的酶水合作用和稳定性。在不同表面上的酶稳定性测定将显示酶的稳定性和总体水合状态之间的相关性或因果关系。溶剂-酶-材料界面的分子和量子力学模拟将提出关于表面水分子运动和聚集的水合机制。 SA3:通过共冻干和与多种大分子如甲氧基聚乙二醇(PEG)和环糊精的化学修饰,系统地、合理地修饰预先设计的siRNA。HeLa细胞将用这些修饰的siRNA转染以敲低特定基因表达并评估其稳定性、效率和穿过细胞壁膜的能力的可能增加。这项研究将提供物理和化学的见解siRNA的稳定性和细胞膜转移的机制。分子动力学模拟将用于确定修饰的siRNA和天然siRNA之间的结构差异。 SA4:利用我们在Forster共振能量转移(FRET)、EPR和氟NMR方面的专业知识设计新技术,直接测量单链和双链siRNA在复杂生物液体(如血浆、细胞外基质成分和细胞质)中的溶核稳定性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GABRIEL Luis BARLETTA其他文献

GABRIEL Luis BARLETTA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GABRIEL Luis BARLETTA', 18)}}的其他基金

Novel Gold nanocarriers conjugates for microRNA delivery in ovarian cancer
新型金纳米载体缀合物用于卵巢癌中的 microRNA 递送
  • 批准号:
    9977255
  • 财政年份:
    2018
  • 资助金额:
    $ 10.36万
  • 项目类别:
Novel Gold nanocarriers conjugates for microRNA delivery in ovarian cancer
新型金纳米载体缀合物用于卵巢癌中的 microRNA 递送
  • 批准号:
    10225464
  • 财政年份:
    2018
  • 资助金额:
    $ 10.36万
  • 项目类别:
STUDY OF THE UNDERLYING FACTORS THAT SHAPE ENZYME PROPERTIES IN ORGANIC SOLVENT
有机溶剂中影响酶性质的基本因素的研究
  • 批准号:
    8167849
  • 财政年份:
    2010
  • 资助金额:
    $ 10.36万
  • 项目类别:
STUDY OF THE UNDERLYING FACTORS THAT SHAPE ENZYME PROPERTIES IN ORGANIC SOLVENT
有机溶剂中影响酶性质的基本因素的研究
  • 批准号:
    7960048
  • 财政年份:
    2009
  • 资助金额:
    $ 10.36万
  • 项目类别:
STUDY OF THE UNDERLYING FACTORS THAT SHAPE ENZYME PROPERTIES IN ORGANIC SOLVENT
有机溶剂中影响酶性质的基本因素的研究
  • 批准号:
    7720862
  • 财政年份:
    2008
  • 资助金额:
    $ 10.36万
  • 项目类别:
Dynamics and Function Relationships of Hydrolases in Organic Solvents
有机溶剂中水解酶的动力学和功能关系
  • 批准号:
    7288966
  • 财政年份:
    2007
  • 资助金额:
    $ 10.36万
  • 项目类别:
STUDY OF THE UNDERLYING FACTORS THAT SHAPE ENZYME PROPERTIES IN ORGANIC SOLVENT
有机溶剂中影响酶性质的基本因素的研究
  • 批准号:
    7610156
  • 财政年份:
    2007
  • 资助金额:
    $ 10.36万
  • 项目类别:
STUDY OF THE UNDERLYING FACTORS THAT SHAPE ENZYME PROPERTIES IN ORGANIC SOLVENT
有机溶剂中影响酶性质的基本因素的研究
  • 批准号:
    7381560
  • 财政年份:
    2006
  • 资助金额:
    $ 10.36万
  • 项目类别:
STUDY OF THE UNDERLYING FACTORS THAT SHAPE ENZYME PROPERTIES IN ORGANIC SOLVENTS
研究有机溶剂中影响酶性质的基本因素
  • 批准号:
    7170784
  • 财政年份:
    2005
  • 资助金额:
    $ 10.36万
  • 项目类别:
ACTIVITY, STABILITY, MECHANISM OF HYDROLASES
水解酶的活性、稳定性和机制
  • 批准号:
    6972463
  • 财政年份:
    2004
  • 资助金额:
    $ 10.36万
  • 项目类别:

相似国自然基金

帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
  • 批准号:
    32170319
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
  • 批准号:
    31672538
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
  • 批准号:
    31372080
  • 批准年份:
    2013
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
  • 批准号:
    81172529
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
  • 批准号:
    81070952
  • 批准年份:
    2010
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
  • 批准号:
    30672361
  • 批准年份:
    2006
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目

相似海外基金

I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
  • 批准号:
    2419915
  • 财政年份:
    2024
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Standard Grant
Modelling drug binding to biological ion channels
模拟药物与生物离子通道的结合
  • 批准号:
    2747257
  • 财政年份:
    2022
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Studentship
Elucidation of biological functions of the NCBP3 RNA-binding protein using a novel mutant mouse strain
使用新型突变小鼠品系阐明 NCBP3 RNA 结合蛋白的生物学功能
  • 批准号:
    22K06065
  • 财政年份:
    2022
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identifying binding partners, biological substrates and antisense oligonucleotides regulating expression of short and long ACE2.
识别调节短和长 ACE2 表达的结合伴侣、生物底物和反义寡核苷酸。
  • 批准号:
    BB/V019848/1
  • 财政年份:
    2021
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Research Grant
Structure and function of pufferfish toxin, tetrodotoxin, binding proteins as biological defense agent
河豚毒素、河豚毒素、结合蛋白作为生物防御剂的结构和功能
  • 批准号:
    19K06241
  • 财政年份:
    2019
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The molecular and biological roles of growth inhibiting chromatin binding proteins
生长抑制染色质结合蛋白的分子和生物学作用
  • 批准号:
    nhmrc : GNT1143612
  • 财政年份:
    2018
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Project Grants
Investigating a biological specificity conundrum: the role of dynamics in transcription factor binding
研究生物特异性难题:动力学在转录因子结合中的作用
  • 批准号:
    406750
  • 财政年份:
    2018
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Studentship Programs
Biological effect and preventive method for human serum albumin binding to transboundary air borne PM2.5.
人血清白蛋白与跨境空气PM2.5结合的生物学效应及预防方法。
  • 批准号:
    18H03039
  • 财政年份:
    2018
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The molecular and biological roles of growth inhibiting chromatin binding proteins
生长抑制染色质结合蛋白的分子和生物学作用
  • 批准号:
    nhmrc : 1143612
  • 财政年份:
    2018
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Project Grants
Electrical Detection of Small Molecule Binding to Biological Receptors using Organic Thin Film Transistors : A new approach for label free assays
使用有机薄膜晶体管对小分子与生物受体结合的电检测:一种无标记测定的新方法
  • 批准号:
    133593
  • 财政年份:
    2018
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Feasibility Studies
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了