HYDROLASE STABILITY ENHANCEMENT AND ITS APPLICATION TO SIRNA
水解酶稳定性增强及其在 SIRNA 中的应用
基本信息
- 批准号:8360149
- 负责人:
- 金额:$ 10.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesBindingBiologicalBiomedical ResearchBiotechnologyCell WallCell membraneChemicalsComplementComplexCyclodextrinsCytoplasmCytoskeletonDiseaseElectron Spin Resonance SpectroscopyEnergy TransferEnsureEnzyme StabilityEnzymesEthylene GlycolsEtiologyExhibitsExposure toFluorineFreeze DryingFundingGene ExpressionGenesGrantHela CellsHydration statusHydrolaseImmobilized EnzymesLiquid substanceLong-Term EffectsMalignant NeoplasmsMeasuresMechanicsMembraneMethodologyModificationMolecularNational Center for Research ResourcesNatureNuclear Magnetic ResonanceNucleic AcidsOrganic solvent productPlasmaPlayPrincipal InvestigatorPuerto RicoReactionResearchResearch InfrastructureResourcesRoleSmall Interfering RNASolventsSourceSpin LabelsStructureSurfaceTechnical ExpertiseTechniquesTheoretical StudiesUnited States National Institutes of HealthVirus DiseasesWateraqueouscostdesignethylene glycolinsightmacromoleculemolecular dynamicsnovelquantumresearch studysimulation
项目摘要
This subproject is one of many research subprojects utilizing the resources
provided by a Center grant funded by NIH/NCRR. Primary support for the subproject
and the subproject's principal investigator may have been provided by other sources,
including other NIH sources. The Total Cost listed for the subproject likely
represents the estimated amount of Center infrastructure utilized by the subproject,
not direct funding provided by the NCRR grant to the subproject or subproject staff.
Enzymes play an essential role in biotechnology where they are used to catalyze a broad range of biorelevant reactions.However enzymes exhibit poor stability, that is, their catalytic activity decreases drastically with prolonged exposure to aqueous or organic solvents. This limitation and the poor understanding of the relationship between stability, structure,and function severely limits the potential of enzymes. The main objectives of this research are to fully understand and enhance enzyme stability. Our studies show that poor enzyme stability is inherently due to minute but critical changes that occur in the active site during solvent exposure. Experimental and theoretical studies will determine the nature of these critical changes and establish causal relationships between these changes and enzyme stability. Novel methodologies will be developed to reduce the changes with in the active site during prolonged solvent exposure in order to enhance enzyme stability. The technical expertise and understanding gained in the study of enzyme stability will be applied to surpass a similar limitations faced by siRNAs. Short interfering RNAs are short double-stranded nucleic acids that are being developed to target therapeuticaly important genes in cancer, viral infections, and other diseases. These siRNA will be chemically modified with a variety of macromolecules to increase their stability and efficiency, and to increase their ability to cross a cell wall membrane. New techniques will be designed to directly measure siRNA stability in complex biological fluids.
Proposed Specific Aims (SA):
SA1: Study the enzyme's operational stability in terms of the role of the enzyme reversibly bound water and enzyme dynamics. The exchange of reversibly bound water molecules with the bulk of an organic solvent will be studied using nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). The effect of long term enzyme incubation in an organic solvent as well as the effect of organic solvent hydration on enzyme polarity will be measured using EPR. Molecular dynamics simulation of an EPR spin-label and of the reversibly bound waters and solvent molecules near the active site will complement the experimental study.
SA2: Enhance the stability of enzymes in organic solvents by immobilizing the enzyme on polar and hydrophilic surfaces of materials such as nanosilicates, to ensure proper enzyme hydration and stability. Enzyme stability determination on different surfaces will show correlation or causation between stability and overall hydration state of the enzyme. Molecular and quantum-mechanical dynamics simulation of the solvent-enzyme-material interface will suggest a hydration mechanism regarding surface water molecule movementand clustering.
SA3: Modify systematically and rationally a pre-designed siRNA by co-lyophilization and chemical modification with a variety of macromolecules such as methoxy poly(ethylene glycol) (PEG) and cyclodextrins. HeLa cells will be transfected with these modified siRNA to knockdown a specific gene expression and evaluate possible increase to their stability, efficiency, and ability to cross the cell wall membrane. This study will provide physical and chemical insights into the mechanisms of siRNA stability and cell membrane transfer. Molecular dynamics simulation will be used to determine structural differences between modified and natural siRNA.
SA4: Design new techniques involving our expertise with Forster resonance energy transfer (FRET), EPR and fluorine NMR to directly measure single-strand and duplex siRNA nucleolytic stability in complex biological fluids such as blood plasma, extra- cellular matrix components and cellular cytoplasm.
该副本是利用资源的众多研究子项目之一
由NIH/NCRR资助的中心赠款提供。对该子弹的主要支持
而且,副投影的主要研究员可能是其他来源提供的
包括其他NIH来源。 列出的总费用可能
代表subproject使用的中心基础架构的估计量,
NCRR赠款不直接向子弹或副本人员提供的直接资金。
酶在生物技术中起着至关重要的作用,在生物技术中,它们被用来催化广泛的生物硫化反应。但是,随着延长暴露于水性或有机溶剂的延长,它们的催化活性表现出较差的稳定性。这种局限性以及对稳定,结构和功能之间关系的不良理解严重限制了酶的潜力。这项研究的主要目标是充分理解和增强酶稳定性。我们的研究表明,较差的酶稳定性本质上是由于溶剂暴露期间活跃部位发生的微小但关键的变化。实验和理论研究将确定这些关键变化的性质,并在这些变化和酶稳定性之间建立因果关系。将开发新的方法,以减少长时间溶剂暴露期间活跃位点的变化,以增强酶稳定性。在酶稳定性研究中获得的技术专长和理解将应用于超过siRNA所面临的类似限制。简短的干扰RNA是短双链核酸,它们正在开发,以靶向癌症,病毒感染和其他疾病的疗法重要基因。这些siRNA将通过多种大分子化学修饰,以提高其稳定性和效率,并提高其穿过细胞壁膜的能力。新技术将旨在直接测量复杂生物流体中的siRNA稳定性。
提出的特定目标(SA):
SA1:根据酶可逆地结合水和酶动力学的作用,研究酶的操作稳定性。将使用核磁共振(NMR)和电子顺磁共振(EPR)研究可逆结合的水分子与大部分有机溶剂的交换。长期酶在有机溶剂中孵育以及有机溶剂水合对酶极性的影响将使用EPR测量。 EPR自旋标签以及活动位点附近的可逆水域和溶剂分子的分子动力学模拟将补充实验研究。
SA2:通过将酶(例如纳米硅酸盐)的极性和亲水性表面固定在有机溶剂中的稳定性,以确保正确的酶水合和稳定性。不同表面上的酶稳定性测定将显示酶的稳定性与整体水合状态之间的相关性或因果关系。溶剂 - 酶 - 材料界面的分子和量子力学动力学模拟将提出有关地表水分子运动和聚类的水合机制。
SA3:通过与多种大分子(例如甲氧基聚(PEG))(PEG)和环糊精的多种大分子(PEG)和环糊精的多种大分子和化学修饰,通过共培养和化学修饰进行系统和合理地修饰。 HeLa细胞将用这些修饰的siRNA转染,以敲除特定的基因表达,并评估其稳定性,效率和越过细胞壁膜的能力的增加。这项研究将提供有关siRNA稳定性和细胞膜转移机制的物理和化学见解。分子动力学模拟将用于确定修饰和天然siRNA之间的结构差异。
SA4:设计涉及Forster共振能量转移(FRET),EPR和氟NMR的专业知识的新技术直接在复杂的生物学流体,例如血浆,外细胞外基质组件和细胞胞质质中直接测量单链和双链siRNA核解度稳定性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GABRIEL Luis BARLETTA其他文献
GABRIEL Luis BARLETTA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GABRIEL Luis BARLETTA', 18)}}的其他基金
Novel Gold nanocarriers conjugates for microRNA delivery in ovarian cancer
新型金纳米载体缀合物用于卵巢癌中的 microRNA 递送
- 批准号:
9977255 - 财政年份:2018
- 资助金额:
$ 10.36万 - 项目类别:
Novel Gold nanocarriers conjugates for microRNA delivery in ovarian cancer
新型金纳米载体缀合物用于卵巢癌中的 microRNA 递送
- 批准号:
10225464 - 财政年份:2018
- 资助金额:
$ 10.36万 - 项目类别:
STUDY OF THE UNDERLYING FACTORS THAT SHAPE ENZYME PROPERTIES IN ORGANIC SOLVENT
有机溶剂中影响酶性质的基本因素的研究
- 批准号:
8167849 - 财政年份:2010
- 资助金额:
$ 10.36万 - 项目类别:
STUDY OF THE UNDERLYING FACTORS THAT SHAPE ENZYME PROPERTIES IN ORGANIC SOLVENT
有机溶剂中影响酶性质的基本因素的研究
- 批准号:
7960048 - 财政年份:2009
- 资助金额:
$ 10.36万 - 项目类别:
STUDY OF THE UNDERLYING FACTORS THAT SHAPE ENZYME PROPERTIES IN ORGANIC SOLVENT
有机溶剂中影响酶性质的基本因素的研究
- 批准号:
7720862 - 财政年份:2008
- 资助金额:
$ 10.36万 - 项目类别:
Dynamics and Function Relationships of Hydrolases in Organic Solvents
有机溶剂中水解酶的动力学和功能关系
- 批准号:
7288966 - 财政年份:2007
- 资助金额:
$ 10.36万 - 项目类别:
STUDY OF THE UNDERLYING FACTORS THAT SHAPE ENZYME PROPERTIES IN ORGANIC SOLVENT
有机溶剂中影响酶性质的基本因素的研究
- 批准号:
7610156 - 财政年份:2007
- 资助金额:
$ 10.36万 - 项目类别:
STUDY OF THE UNDERLYING FACTORS THAT SHAPE ENZYME PROPERTIES IN ORGANIC SOLVENT
有机溶剂中影响酶性质的基本因素的研究
- 批准号:
7381560 - 财政年份:2006
- 资助金额:
$ 10.36万 - 项目类别:
STUDY OF THE UNDERLYING FACTORS THAT SHAPE ENZYME PROPERTIES IN ORGANIC SOLVENTS
研究有机溶剂中影响酶性质的基本因素
- 批准号:
7170784 - 财政年份:2005
- 资助金额:
$ 10.36万 - 项目类别:
相似国自然基金
污水处理系统结合态雌激素的生物转化机制与风险削减研究
- 批准号:52370200
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
代谢工程与微生物传感器结合筛选高效产糖酵母底盘菌株
- 批准号:22308369
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
探索气候变化下全球生物质能结合碳捕集与封存技术的减碳潜力
- 批准号:42307128
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
吡咯生物碱DM14靶向结合肾小管上皮细胞GRK2延缓糖尿病肾病进展的作用机制研究
- 批准号:82370696
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
单颗粒分析结合多元同位素示踪研究城市大气细颗粒物中重金属生物可给性、迁移转化与来源
- 批准号:42377244
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 10.36万 - 项目类别:
Discovery of phosgene and chlorine gas modes of action and therapeutic targets using chemoproteomic profiling strategies
使用化学蛋白质组学分析策略发现光气和氯气的作用模式和治疗靶点
- 批准号:
10883970 - 财政年份:2023
- 资助金额:
$ 10.36万 - 项目类别:
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
- 批准号:
10725416 - 财政年份:2023
- 资助金额:
$ 10.36万 - 项目类别:
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
- 批准号:
10653587 - 财政年份:2023
- 资助金额:
$ 10.36万 - 项目类别:
Nitrosative stress and NO detoxifying reaction mechanisms in microbial nonheme diiron proteins
微生物非血红素二铁蛋白的亚硝化应激和NO解毒反应机制
- 批准号:
10656107 - 财政年份:2023
- 资助金额:
$ 10.36万 - 项目类别: