MULTIPLEXED ECHO PLANAR IMAGING FOR NEUROSCIENCES

用于神经科学的多重回波平面成像

基本信息

  • 批准号:
    8444427
  • 负责人:
  • 金额:
    $ 83.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-15 至 2015-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): MRI is a proven non-invasive technique that makes high resolution image of the brain. Echo planar imaging (EPI) is the most widely used MRI technique used for neurosciences due to its extremely fast imaging speed and unique contrast mechanisms. EPI combined with diffusion sensitive gradient pulses provides 3D visualization of axonal fibers, which reveals the connectional anatomy of the human brain. EPI is also nearly exclusively used for functional MRI (fMRI) given its extremely high sensitivity to changes in "blood oxygen level dependent" (BOLD) contrast in different regions of the brain, revealing maps of neuronal activity. We are proposing to develop a family of highly efficient new EPI sequences for diffusion and fMRI providing several times faster imaging of the brain. This new faster imaging technique works by multiplexing several images within the single-shot echo train, to produce several images instead of a single EPI image from a each train of signals, whereas only a single image is produced in the normal EPI pulse sequence. The new Multiplexed EPI imaging sequence will largely replace the use of the original EPI sequence invented by Peter Mansfield in 1978 that to date has been used for all neuroscience and clinical brain imaging. The availability of these Multiplexed EPI techniques will give researchers and clinicians the capability of performing high angular resolution diffusion imaging (HARDI) in scan times reduced from 25 minutes to 8 or 12 minutes scans and these scan times will be more tolerable by both patients and research subjects. The multiplexed EPI can scan many times faster or instead be used to provide more images that are thinner for higher resolution and reduced artifacts. The greatly accelerated scan times of the whole brain will enable new experiments in functional MRI at 7 Tesla and 3 Tesla. The sequence will be designed, implemented and evaluated on MRI scanners operating at 3T at University of California Berkeley and San Francisco and at 7T and 10.5T at University of Minnesota. Once the Multiplexed EPI sequence is fully evaluated and optimized, it will be made into a useful tool for basic and clinical neuroscience research, and for clinical diagnostic imaging.
描述(由申请人提供):MRI是一种经过验证的非侵入性技术,可对大脑进行高分辨率成像。回波平面成像(EPI)由于其极快的成像速度和独特的对比机制,是用于神经科学的最广泛使用的MRI技术。EPI结合扩散敏感梯度脉冲提供轴突纤维的3D可视化,其揭示了人脑的连接解剖。EPI也几乎专门用于功能性MRI(fMRI),因为它对大脑不同区域的“血氧水平依赖”(BOLD)对比度变化具有极高的敏感性,可以显示神经元活动的地图。我们建议开发一系列高效的新EPI序列,用于扩散和功能磁共振成像,提供几倍的大脑成像速度。这种新的更快的成像技术通过在单次激发回波序列内多路复用多个图像来工作,以从每个信号序列产生多个图像而不是单个EPI图像,而在正常EPI脉冲序列中仅产生单个图像。新的多路复用EPI成像序列将在很大程度上取代彼得曼斯菲尔德在1978年发明的原始EPI序列的使用,该序列迄今已用于所有神经科学和临床脑成像。这些多路复用EPI技术的可用性将使研究人员和临床医生能够在从25分钟减少到8或12分钟扫描的扫描时间内执行高角分辨率扩散成像(HARDI),并且这些扫描时间将更容易被患者和研究受试者所耐受。多路复用的EPI可以更快地扫描许多倍,或者替代地用于提供更薄的更多图像,以获得更高的分辨率和减少的伪影。整个大脑的扫描时间大大加快,这将使功能性磁共振成像在7特斯拉和3特斯拉的新实验成为可能。该序列将在加州伯克利大学和旧金山弗朗西斯科的3T和明尼苏达大学的7T和10.5T下运行的MRI扫描仪上设计、实施和评价。一旦多重EPI序列得到充分评估和优化,它将成为基础和临床神经科学研究以及临床诊断成像的有用工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Alan Feinberg其他文献

David Alan Feinberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Alan Feinberg', 18)}}的其他基金

MRI CORTICOGRAPHY: DEVELOPING NEXT GENERATION MICROSCALE HUMAN CORTEX MRI SCANNER
MRI 皮质成像:开发下一代微型人类皮质 MRI 扫描仪
  • 批准号:
    10265466
  • 财政年份:
    2017
  • 资助金额:
    $ 83.2万
  • 项目类别:
MRI CORTICOGRAPHY: DEVELOPING NEXT GENERATION MICROSCALE HUMAN CORTEX MRI SCANNER
MRI 皮质成像:开发下一代微型人类皮质 MRI 扫描仪
  • 批准号:
    9768463
  • 财政年份:
    2017
  • 资助金额:
    $ 83.2万
  • 项目类别:
Foundations of MRI Corticography for mesoscale organization and neuronal circuitry
中尺度组织和神经元回路的 MRI 皮质成像基础
  • 批准号:
    9206105
  • 财政年份:
    2016
  • 资助金额:
    $ 83.2万
  • 项目类别:
Highly Accelerated Simultaneous Multi-Slice Phase Contrast MRI
高加速同步多层相衬 MRI
  • 批准号:
    9142186
  • 财政年份:
    2016
  • 资助金额:
    $ 83.2万
  • 项目类别:
Foundations of MRI Corticography for mesoscale organization and neuronal circuitry
中尺度组织和神经元回路的 MRI 皮质成像基础
  • 批准号:
    9763650
  • 财政年份:
    2016
  • 资助金额:
    $ 83.2万
  • 项目类别:
Highly Accelerated Simultaneous Multi-Slice Phase Contrast MRI
高加速同步多层相衬 MRI
  • 批准号:
    9322305
  • 财政年份:
    2016
  • 资助金额:
    $ 83.2万
  • 项目类别:
HIGHLY EFFICIENT CEREBRAL PERFUSION MRI
高效脑灌注 MRI
  • 批准号:
    9043963
  • 财政年份:
    2015
  • 资助金额:
    $ 83.2万
  • 项目类别:
HIGHLY EFFICIENT CEREBRAL PERFUSION MRI
高效脑灌注 MRI
  • 批准号:
    9244859
  • 财政年份:
    2015
  • 资助金额:
    $ 83.2万
  • 项目类别:
MRI Corticography (MRCoG): Micro-scale Human Cortical Imaging
MRI 皮质成像 (MRCoG):微型人体皮质成像
  • 批准号:
    9085397
  • 财政年份:
    2014
  • 资助金额:
    $ 83.2万
  • 项目类别:
MRI Corticography (MRCoG): Micro-scale Human Cortical Imaging
MRI 皮质成像 (MRCoG):微型人体皮质成像
  • 批准号:
    8828462
  • 财政年份:
    2014
  • 资助金额:
    $ 83.2万
  • 项目类别:

相似海外基金

Shared and Distributed Memory Parallel Pre-Conditioning and Acceleration Algorithms for "Spline- Enhanced" Spatial Discretisations
用于“样条增强”空间离散化的共享和分布式内存并行预处理和加速算法
  • 批准号:
    2907459
  • 财政年份:
    2023
  • 资助金额:
    $ 83.2万
  • 项目类别:
    Studentship
Efficient algorithms and succinct data structures for acceleration of telescoping and related problems
用于加速伸缩及相关问题的高效算法和简洁数据结构
  • 批准号:
    RGPIN-2021-03147
  • 财政年份:
    2022
  • 资助金额:
    $ 83.2万
  • 项目类别:
    Discovery Grants Program - Individual
Acceleration framework for training deep learning by cooperative with algorithms and computer architectures
通过与算法和计算机架构合作训练深度学习的加速框架
  • 批准号:
    21K17768
  • 财政年份:
    2021
  • 资助金额:
    $ 83.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Efficient algorithms and succinct data structures for acceleration of telescoping and related problems
用于加速伸缩及相关问题的高效算法和简洁数据结构
  • 批准号:
    RGPIN-2021-03147
  • 财政年份:
    2021
  • 资助金额:
    $ 83.2万
  • 项目类别:
    Discovery Grants Program - Individual
Material and Device Building Blocks for Hardware Acceleration of Machine Learning and Artificial Intelligence Algorithms
用于机器学习和人工智能算法硬件加速的材料和设备构建模块
  • 批准号:
    2004791
  • 财政年份:
    2020
  • 资助金额:
    $ 83.2万
  • 项目类别:
    Continuing Grant
CIF: Small: Collaborative Research: Acceleration Algorithms for Large-scale Nonconvex Optimization
CIF:小型:协作研究:大规模非凸优化的加速算法
  • 批准号:
    1909291
  • 财政年份:
    2019
  • 资助金额:
    $ 83.2万
  • 项目类别:
    Standard Grant
Acceleration of trigger algorithms with FPGAs at the LHC implemented using higher-level programming languages
使用高级编程语言在 LHC 上使用 FPGA 加速触发算法
  • 批准号:
    ST/S005560/1
  • 财政年份:
    2019
  • 资助金额:
    $ 83.2万
  • 项目类别:
    Training Grant
CIF: Small: Collaborative Research: Acceleration Algorithms for Large-scale Nonconvex Optimization
CIF:小型:协作研究:大规模非凸优化的加速算法
  • 批准号:
    1909298
  • 财政年份:
    2019
  • 资助金额:
    $ 83.2万
  • 项目类别:
    Standard Grant
Acceleration of trigger algorithms with FPGAs at the LHC implemented using higher-level programming languages
使用高级编程语言在 LHC 上使用 FPGA 加速触发算法
  • 批准号:
    2348748
  • 财政年份:
    2019
  • 资助金额:
    $ 83.2万
  • 项目类别:
    Studentship
OAC Core: Small: Enabling High-fidelity Turbulent Reacting-Flow Simulations through Advanced Algorithms, Code Acceleration, and High-order Methods for Extreme-scale Computing
OAC 核心:小型:通过高级算法、代码加速和超大规模计算的高阶方法实现高保真湍流反应流模拟
  • 批准号:
    1909379
  • 财政年份:
    2019
  • 资助金额:
    $ 83.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了