Degradable orthopedic hardware
可降解矫形硬件
基本信息
- 批准号:9438859
- 负责人:
- 金额:$ 44.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-03-01 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlloysAnimal ModelAnimalsBiocompatible MaterialsBiological AssayBiomechanicsBiomedical EngineeringBone RegenerationBone remodelingChildClinicalDataDepositionDevice RemovalDevicesDiagnostic radiologic examinationEvaluationExcisionFormulationFracture FixationGoalsGoldHistologicHistologyImage AnalysisIn VitroInfectionInflammatoryKineticsMechanicsMetalsModelingModificationMolecular WeightMorphologyOperative Surgical ProceduresOrthopedicsOsteolysisOutcomePatient-Focused OutcomesPolyglycolic AcidPorosityPropertyProteinsRattusReactionRecording of previous eventsResearchResearch PersonnelRoleRunningSilkStressStructureSurgeonSystemTestingTimeTimeLineTissuesTitaniumVariantX-Ray Computed Tomographybasebiodegradable polymerbonedesignhealingimplantationimprovedin vivoinsightinterestlead candidatemechanical propertiesmeetingsnanoosteogenicpoly(lactic acid)poly-L-lactic acidpublic health relevancerepairedresponseretinal rodsscreeningsingle photon emission computed tomography
项目摘要
DESCRIPTION: Degradable orthopedic repair devices would provide significant clinical benefits to overcome current limitations in bone remodeling, degradation kinetics and bone integration. Current options are limited primarily to nondegradable metals which have become the gold standard for orthopedic repairs due to robust mechanical properties and ease of implantation, while limitations of stress shielding, infections, bone remodeling and second surgical removals have shifted significant interest toward degradable devices. Orthopedic screws and plates composed of polylactic and polyglycolic acids have become lead candidates for degradable hardware with a reduced need for removal and improved bone remodeling. However, polylactic and polyglycolic acid screws and plates are associated with inflammatory reactions due to degradation products, osteolysis and incomplete bone remodeling. Thus, orthopedic hardware that has appropriate mechanical properties, tunable and full degradation and is pro-osteogenic would have a major impact on orthopedic repairs in promoting accelerated healing, reducing second surgeries and improving long-term patient outcomes. Our long term goal is to develop fully degradable screws, plates and rods using silk protein functionalized by bioactive molecules to promote healthy bone remodeling and integration. The objective of the proposed research is to determine the ability of the proposed silk format to meet the structural needs of degradable orthopedic systems and successfully direct pro-osteogenic remodeling. We hypothesize that functionalized silk orthopedic hardware can be tuned to fully degrade over a 6-12 month time while promoting osteointegration to optimize utility in orthopedic repairs and meeting mechanical requirements. Our extensive preliminary in vitro and in vivo data support this hypothesis. The rationale for this research is to gain fundamental insight into the role of functionalized and degradable orthopedic screws and plates in accelerating healing and directing successful bone remodeling. The anticipated outcomes are expected to have a substantial positive impact on orthopedic repairs by presenting hardware designs capable of meeting mechanical needs of fracture fixation and addressing current limitations and complications. An interdisciplinary team of investigators who have a history of collaborative efforts will conduct the studies [David Kaplan - silk biomaterials, bioengineering, Ara Nazarian - biomechanics/biomiaging and animal studies, Sam Lin and Brian Snyder - orthopedic surgeons].
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID L. KAPLAN其他文献
DAVID L. KAPLAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID L. KAPLAN', 18)}}的其他基金
2023 Silk Proteins and the Transition to Biotechnologies Gordon Research Conference
2023 年丝蛋白和向生物技术的过渡戈登研究会议
- 批准号:
10681751 - 财政年份:2023
- 资助金额:
$ 44.48万 - 项目类别:
Functional three dimensional brain-like tissues to study mechanisms of traumatic brain injury
功能性三维类脑组织用于研究创伤性脑损伤的机制
- 批准号:
8942566 - 财政年份:2015
- 资助金额:
$ 44.48万 - 项目类别:
Functional three dimensional brain-like tissues to study mechanisms of traumatic brain injury
功能性三维类脑组织用于研究创伤性脑损伤的机制
- 批准号:
9266832 - 财政年份:2015
- 资助金额:
$ 44.48万 - 项目类别:
Multifunctional Tropoelastin-Silk Biomaterial Systems
多功能原弹性蛋白-丝生物材料系统
- 批准号:
8518096 - 财政年份:2012
- 资助金额:
$ 44.48万 - 项目类别:
In vitro bioreactor sys for platelet formation
用于血小板形成的体外生物反应器系统
- 批准号:
8723656 - 财政年份:2012
- 资助金额:
$ 44.48万 - 项目类别:
相似海外基金
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 44.48万 - 项目类别:
Studentship
CAREER: Emergence of in-liquid structures in metallic alloys by nucleation and growth
职业:通过成核和生长在金属合金中出现液态结构
- 批准号:
2333630 - 财政年份:2024
- 资助金额:
$ 44.48万 - 项目类别:
Continuing Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 44.48万 - 项目类别:
Continuing Grant
CAREER: Understanding Interface Controlled Mechanisms of Recrystallization in Microstructurally Complex Mg Alloys
职业:了解微观结构复杂镁合金中界面控制的再结晶机制
- 批准号:
2339387 - 财政年份:2024
- 资助金额:
$ 44.48万 - 项目类别:
Continuing Grant
CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
- 批准号:
2400227 - 财政年份:2024
- 资助金额:
$ 44.48万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
- 批准号:
2348956 - 财政年份:2024
- 资助金额:
$ 44.48万 - 项目类别:
Standard Grant
Towards use-as-manufactured titanium alloys for additive manufacturing
致力于将钛合金用于增材制造
- 批准号:
LP210301261 - 财政年份:2024
- 资助金额:
$ 44.48万 - 项目类别:
Linkage Projects
Innovative Zn alloys with essential mechanical and biofunctional properties
具有基本机械和生物功能特性的创新锌合金
- 批准号:
DP240101131 - 财政年份:2024
- 资助金额:
$ 44.48万 - 项目类别:
Discovery Projects
Next generation titanium alloys for additive manufacturing
用于增材制造的下一代钛合金
- 批准号:
FT230100683 - 财政年份:2024
- 资助金额:
$ 44.48万 - 项目类别:
ARC Future Fellowships
Impact of impurity elements on the corrosion performance of high strength 6xxx aluminium alloys
杂质元素对高强6xxx铝合金腐蚀性能的影响
- 批准号:
2906344 - 财政年份:2024
- 资助金额:
$ 44.48万 - 项目类别:
Studentship