Multifunctional Tropoelastin-Silk Biomaterial Systems
多功能原弹性蛋白-丝生物材料系统
基本信息
- 批准号:8518096
- 负责人:
- 金额:$ 27.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBindingBiocompatibleBiocompatible MaterialsBiologicalBiological ProcessBone MarrowCarbodiimidesCell CommunicationCell physiologyCellsChemicalsChemistryClinicalCollagenCouplingDataElasticityEnvironmentExtracellular MatrixFamilyFiberFibronectinsFilmGenotypeGoalsGrowthHumanHyaluronic AcidIn VitroInflammatory ResponseMechanicsModificationMolecularMorphologyMuscle CellsNeuronsOutcomePolymersProcessPropertyProteinsReactionRegenerative MedicineSignal TransductionSilkSourceStem cellsStretchingStructural ProteinStructureSupporting CellSurfaceSystemTissuesTropoelastinbasebiomaterial compatibilitycrosslinkfibrous proteinflexibilityhuman tissueimprovedin vivoinsightmolecular scalenovelosteogenicphysical propertyresponsestem cell fatesuccess
项目摘要
DESCRIPTION (provided by applicant): New multifunctional, degradable, polymeric biomaterial systems are needed that can be tailored to specific cell and tissue needs in vitro and in vivo. While protein-protein composites dominate tissue structure and function in our bodies, we have been unable to recapitulate the complexity and control of such systems in vitro for new biomaterials in order to direct cell and tissue functions. For example, material systems that can form mechanically robust and durable biomaterials to give highly flexible and dynamic biomaterials, remains a challenge. Our goal is to construct a panel of composite protein biomaterials that can cover a range of physical properties, to mimic the elasticity of diverse tissue structures and the consequential ability to control biological function - such as to direct stem cell responses. The hypothesis is that combinations of a highly elastic and dynamic structural protein (tropoelastin) with tough, durable proteins (silk) will generate new multifunctional protein composite systems that can offer a broad platform of utility to the biomaterials field. We propose to generate a new family of highly controllable composite fibrous protein systems, based on combinations of these two well-established structural proteins, tropoelastin and silk, both biodegradable protein polymers with good biocompatibility. These proteins encompass a range of biomaterial needs; tropoelastin provides highly flexible and dynamic structural features, silk provides mechanical toughness and slow degradation. Our findings of molecular-scale interactions between these two structural proteins, forms the basis of the present proposal. The experimental plans are focused on: (a) further elucidation of the mechanistic interactions between tropoelastin and silk to optimize control of material structure and function, (b) assessment of cell interactions for the range of materials generated to understand relationships between the protein composites, material compliance and cell outcomes, using hMSCs and cortical neurons, and in vivo screens of material degradation profiles and inflammatory responses, and (c) exploitation of the dynamic material properties achievable with these systems towards support of cell functions in vitro. The experimental plans are supported by extensive preliminary data that demonstrate our ability to generate the required materials (tropoelastin, silks), to functionalize the materials (e.g., surface chemistry),to probe the interactions among the two components with mechanistic insight, to process the proteins into new material formats, and to direct cell outcomes on these materials with outcomes dependent on the composition. The overall outcome from the plans would be a new protein composite biomaterials platform that would fill an important need in the field of biomaterials, with direct relevance to tough but flexible systems and strong, durable systems.
描述(由申请人提供):需要新的多功能、可降解、聚合物生物材料系统,该系统可以在体外和体内为特定的细胞和组织需求量身定做。虽然蛋白质-蛋白质复合体主导着我们体内的组织结构和功能,但我们一直无法概括这种系统在体外对新生物材料的复杂性和控制性,以便指导细胞和组织功能。例如,能够形成机械坚固和耐用的生物材料以提供高度灵活和动态的生物材料的材料系统仍然是一个挑战。我们的目标是构建一组能够覆盖一系列物理特性的复合蛋白质生物材料,以模拟不同组织结构的弹性和相应的控制生物功能的能力--例如直接干细胞反应。假设是高度弹性和动态的结构蛋白(原弹性蛋白)与坚韧、耐用的蛋白质(丝素)相结合,将产生新的多功能蛋白质复合系统,可以为生物材料领域提供广泛的实用平台。我们建议基于这两种成熟的结构蛋白,原弹性蛋白和丝素的组合,生成一种新的高度可控的复合纤维蛋白系统,这两种蛋白聚合物都是生物可降解的,具有良好的生物相容性。这些蛋白质涵盖了一系列生物材料需求;原弹性蛋白提供了高度灵活和动态的结构特征,丝素提供了机械韧性和缓慢的降解。我们对这两种结构蛋白之间分子尺度相互作用的发现,构成了本提案的基础。实验计划主要集中在:(A)进一步阐明原弹性蛋白和丝素之间的机制相互作用,以优化材料结构和功能的控制;(B)利用hMSCs和皮质神经元,评估产生的一系列材料的细胞相互作用,以了解蛋白质成分、材料顺应性和细胞结果之间的关系,并在体内筛选材料降解情况和炎症反应,以及(C)开发利用这些系统可实现的动态材料特性,以支持体外细胞功能。实验计划得到了大量初步数据的支持,这些数据表明我们有能力产生所需的材料(原弹性蛋白、丝素),使材料功能化(例如,表面化学),以机械的洞察力探索两种成分之间的相互作用,将蛋白质加工成新的材料形式,并根据组成直接在这些材料上产生细胞结果。这些计划的总体结果将是一个新的蛋白质复合生物材料平台,它将满足生物材料领域的一个重要需求,与坚固但灵活的系统和强大、耐用的系统直接相关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID L. KAPLAN其他文献
DAVID L. KAPLAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID L. KAPLAN', 18)}}的其他基金
2023 Silk Proteins and the Transition to Biotechnologies Gordon Research Conference
2023 年丝蛋白和向生物技术的过渡戈登研究会议
- 批准号:
10681751 - 财政年份:2023
- 资助金额:
$ 27.74万 - 项目类别:
Functional three dimensional brain-like tissues to study mechanisms of traumatic brain injury
功能性三维类脑组织用于研究创伤性脑损伤的机制
- 批准号:
8942566 - 财政年份:2015
- 资助金额:
$ 27.74万 - 项目类别:
Functional three dimensional brain-like tissues to study mechanisms of traumatic brain injury
功能性三维类脑组织用于研究创伤性脑损伤的机制
- 批准号:
9266832 - 财政年份:2015
- 资助金额:
$ 27.74万 - 项目类别:
In vitro bioreactor sys for platelet formation
用于血小板形成的体外生物反应器系统
- 批准号:
8723656 - 财政年份:2012
- 资助金额:
$ 27.74万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 27.74万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 27.74万 - 项目类别:
Continuing Grant
Alkane transformations through binding to metals
通过与金属结合进行烷烃转化
- 批准号:
DP240103289 - 财政年份:2024
- 资助金额:
$ 27.74万 - 项目类别:
Discovery Projects
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 27.74万 - 项目类别:
Fellowship
Conformations of musk odorants and their binding to human musk receptors
麝香气味剂的构象及其与人类麝香受体的结合
- 批准号:
EP/X039420/1 - 财政年份:2024
- 资助金额:
$ 27.74万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Understanding the Role of Specific Iron-binding Organic Ligands in Governing Iron Biogeochemistry in the Southern Ocean
博士后奖学金:OPP-PRF:了解特定铁结合有机配体在控制南大洋铁生物地球化学中的作用
- 批准号:
2317664 - 财政年份:2024
- 资助金额:
$ 27.74万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
- 批准号:
2419915 - 财政年份:2024
- 资助金额:
$ 27.74万 - 项目类别:
Standard Grant
CRII: OAC: Development of a modular framework for the modeling of peptide and protein binding to membranes
CRII:OAC:开发用于模拟肽和蛋白质与膜结合的模块化框架
- 批准号:
2347997 - 财政年份:2024
- 资助金额:
$ 27.74万 - 项目类别:
Standard Grant
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
- 批准号:
DP240103141 - 财政年份:2024
- 资助金额:
$ 27.74万 - 项目类别:
Discovery Projects
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 27.74万 - 项目类别:
Research Grant














{{item.name}}会员




