Adenosine and the Basal Forebrain in the Control of Behavioral State

腺苷和基底前脑控制行为状态

基本信息

  • 批准号:
    8258633
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-04-01 至 2013-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Many people reduce their sleep due to medical and non-medical reasons, a pattern that is called chronic sleep restriction (CSR). Reducing sleep for as little as 2 h for several days can impair cardiovascular, immune, and endocrine functions, as well as cognition and daytime vigilance. Sleep disturbances, such as CSR, accompany and aggravate many medical conditions affecting US veterans including PTSD, heart disease, psychiatric disorders, and chronic pain. In experiments, humans report a normalization of subjective sleepiness after as little as 2 or 3 days of CSR (i.e., 3 nights of sleeping only 4h or 6h/night); however, objective sleep onset latency measures indicate that sleepiness increases steadily. Cognitive performance also declines steadily over 14 days of CSR. Thus, humans adapt to some of the perceptual and neurophysiological consequences of CSR, whereas other effects do not adapt. Similar CSR results in rats are described in Aim 1. The biological consequences of CSR have been little investigated due to the relative lack of animal models of CSR. The overall goal of this proposal is to understand the neurobiology underlying the behavioral/physiological consequences of CSR using a rat model. Male rats will be allowed 4, 6, 14, or 24h/day of sleep opportunity for up to 10 days, followed by 5 recovery days. Cage motion is used to produce the periods of wakefulness. Rats adapt readily to this procedure and show no signs of discomfort or stress. The overarching neurobiological hypothesis is that the inhibitory neuromodulator adenosine (AD) mediates the sleepiness and cognitive impairments associated with CSR. The previous findings of this VA merit grant support the hypothesis that AD is a mediator of the sleepiness that follows short periods of sleep loss, a role in which its inhibitory action on the basal forebrain wakefulness-promoting neurons appears especially important. Short periods of sleep loss also increase AD A1 receptor mRNA, supporting our prediction that CSR will increase A1 receptor number in order to maintain elevated levels AD inhibitory tone (i.e., positive feedback). The proposed aims will answer the following questions: Aim 1. What are the effects of CSR on sleepiness and vigilance performance? (using sleep recordings, sleep latency tests, and operant tests of sustained attention). CSR is predicted to produce sleepiness and cognitive impairments in rats (like in humans). Aim 2. What is the effect of CSR on spatial learning and memory (water maze), and on long term potentiation (LTP; a measure of synaptic plasticity important for memory formation). We predict that the CSR-induced spatial memory impairments are mediated by an increase in hippocampal AD tone which reduces LTP. Aim 3. What is the effect of CSR on brain AD tone? (measuring brain extracellular AD levels; AD A1 & A2a receptor mRNA, A1 density & binding). Do the predicted increases in AD receptors alter the behavioral & physiological response to AD drugs? On the first day of CSR, we predict that the behavioral symptoms will correlate with an elevation of BF AD levels, whereas on CSR days 3-10, changes in A1 & A2a receptors maintain elevated levels of AD inhibition in the brain. PUBLIC HEALTH RELEVANCE: Project Narrative Relevance to Veterans' health and/or healthcare issues. All human life, and indeed the life of all mammals, is shaped by periods of wakefulness and sleep, and thus knowledge of the underlying mechanisms is of great biological, social and medical significance. An understanding of how the brain regulates natural sleep holds the promise of providing a basis for the rational development of treatments for sleep disorders affecting the veteran population, such as sleep apnea, narcolepsy, insomnia, and sleep disturbance related to PTSD and traumatic brain injury. Basic research on endogenous neural sleep factors, such as adenosine, could lead to a new generation of medications to both treat insomnia and, conversely, promote attention & vigilance. The significance of this line of research is underscored by the fact that Robert W. McCarley, Director of the Lab of Neuroscience, received the Middleton Award in 2000 based on the adenosine work of the laboratory. The rat model of chronic sleep restriction proposed has high external validity, as many people in our society habitually reduce the amount of sleep they obtain. The recent establishment of an animal model of chronic sleep restriction will provide opportunities for studies aimed at all levels of investigation (from molecular events to behavioral effects). Excessive daytime sleepiness and difficulty maintaining alertness are very common medical complaints, with even greater prevalence in older males, such as the population of US veterans. Chronic sleep restriction can cause or aggravate the symptoms of sleepiness leading to impaired occupational performance and safety, as well as impacting on general health and quality of life. The ability to perform at a high level under the condition of limited sleep is also very important to active military personnel, doctors in residency training, and emergency & transportation workers, just to name a few. Hence, a better understanding of the behavioral and neurobiological consequences of chronic sleep restriction is important for the health care of the veteran population. Recognizing the importance sleep hygiene for the VA healthcare system, we recently began work on an animal model of chronic sleep restriction. This research can be expected to benefit the VA population rather quickly. For example, within 2 yr, the rat models we have developed will be available for testing drugs influencing alertness and sleep. Clinical trials of experimental medications or interventions could follow shortly thereafter via our collaborators doing human research. In conclusion, there is a direct path from our studies on animal models to related clinical research, which could lead to improved medical care of veterans.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ROBERT E STRECKER其他文献

ROBERT E STRECKER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ROBERT E STRECKER', 18)}}的其他基金

BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
  • 批准号:
    10373036
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
  • 批准号:
    10618193
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Role of the basal forebrain in sleep loss induced attention impairments
基底前脑在睡眠不足引起的注意力障碍中的作用
  • 批准号:
    10620170
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Sleep loss impairment of arousal and cognition: role of the basal forebrain
睡眠不足对觉醒和认知的损害:基底前脑的作用
  • 批准号:
    8921583
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Sleep loss impairment of arousal and cognition: role of the basal forebrain
睡眠不足对觉醒和认知的损害:基底前脑的作用
  • 批准号:
    9206087
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Role of the basal forebrain in sleep loss induced attention impairments
基底前脑在睡眠不足引起的注意力障碍中的作用
  • 批准号:
    10359072
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Adenosine and the Basal Forebrain in the Control of Behavioral State
腺苷和基底前脑控制行为状态
  • 批准号:
    7786264
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
Adenosine and the Basal Forebrain in the Control of Behavioral State
腺苷和基底前脑控制行为状态
  • 批准号:
    7687191
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
Adenosine and the Basal Forebrain in the Control of Behavioral State
腺苷和基底前脑控制行为状态
  • 批准号:
    8195550
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
DOPAMINE RELEASE INDUCED BY 4-METHYLAMINOREX
4-METHYLAMINOREX 诱导的多巴胺释放
  • 批准号:
    2119972
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

细胞外腺苷(Adenosine)作为干细胞旁分泌因子的生物学鉴定和功能分析
  • 批准号:
    81570244
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Adenosine诱导A1/A2AR稳态失衡启动慢性低灌注白质炎性损伤及其机制
  • 批准号:
    81171113
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

Allostery-driven G protein selectivity in the adenosine A1 receptor
腺苷 A1 受体中变构驱动的 G 蛋白选择性
  • 批准号:
    BB/W016974/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Allostery-driven G protein selectivity in the adenosine A1 receptor
腺苷 A1 受体中变构驱动的 G 蛋白选择性
  • 批准号:
    BB/W014831/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Investigation of the relationship among Adenosine A1 receptor activity and HRV
腺苷A1受体活性与HRV关系的研究
  • 批准号:
    20K09341
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Changes in adenosine A1 receptor-mediated regulation of hippocampal area CA2 following chronic high-dose caffeine treatment during adolescence in rats
大鼠青春期长期大剂量咖啡因治疗后腺苷 A1 受体介导的海马区 CA2 调节的变化
  • 批准号:
    BB/P008143/2
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Adenosine A1 receptor modulation: Structure, dynamics & novel pharmacological interventions
腺苷 A1 受体调节:结构、动力学
  • 批准号:
    nhmrc : GNT1145420
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Project Grants
Adenosine A1 receptor modulation: Structure, dynamics & novel pharmacological interventions
腺苷 A1 受体调节:结构、动力学
  • 批准号:
    nhmrc : 1145420
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Project Grants
Changes in adenosine A1 receptor-mediated regulation of hippocampal area CA2 following chronic high-dose caffeine treatment during adolescence in rats
大鼠青春期长期大剂量咖啡因治疗后腺苷 A1 受体介导的海马区 CA2 调节的变化
  • 批准号:
    BB/P008143/1
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Understanding mechanisms of allostery and biased agonism at the adenosine A1 receptor
了解腺苷 A1 受体的变构和偏向激动机制
  • 批准号:
    nhmrc : 1084246
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Project Grants
Analgesic actions of adenosine A1 receptor along axonal tracts in chronic pain
腺苷 A1 受体沿轴突束对慢性疼痛的镇痛作用
  • 批准号:
    9101984
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
Analgesic actions of adenosine A1 receptor along axonal tracts in chronic pain
腺苷 A1 受体沿轴突束对慢性疼痛的镇痛作用
  • 批准号:
    9294975
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了