Bioinformatics

生物信息学

基本信息

  • 批准号:
    8576997
  • 负责人:
  • 金额:
    $ 33.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-06-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

The main goal ofthis core is to develop computational procedures for the analysis of high-throughput data from T cell receptor (TCR) or B cell receptor (BCR) repertoire, RNA-seq and flow cytometry, and apply them to study the tissue specific data generated in the proposed projects. TCR and BCR repertoire sequencing provides information about clonal lineage and tissue-specific expansion of T / B cell populations, which is a key component to test the hypotheses in Projects 1, 2 and 4. RNA-seq is a powerful approach to profile gene expression and alternative splicing, which are important for studying the specific states of lymphocytes and local environment of different tissues, and will be applied extensively in Projects 1, 2 and 3. For all projects, a streamlined procedure to analyze large-scale multidimensional flow cytometry data is crucial so we can separate the different immune cell populations we wish to; study precisely. We have three specific service aims in this core: (1) Establish and apply computational approaches to analyze T and B cell receptor repertoire sequencing data. We have established an in-house bioinformatics pipeline to analyze massive accounts of TCR and BCR repertoire sequencing data from lllumina HiSeq or MiSeq platforms. For this part ofthe core, we will continue to develop analytical methods for characterizing repertoire diversity and comparing of repertoire of different tissues across individuals. We will then perform the computational and mathematical analysis of TCR and BCR repertoires for Projects 1, 2 and 4. (2) Establish and apply computational approaches to analyze RNA-seq data to find signatures of expressions that distinguish cell linages and tissues. We have a mature analytical pipeline for RNA-seq data at Columbia Genome Center Next-Generation Sequencing Laboratory. The field is in active development; newer methods are being published. For this part of the core, we will assess the performance of new and existing methods, and optimize the procedure for finding expression signatures that define local environment in different tissues and immune cell states. We will perform the computational analysis for Projects 1 through 3. (3) Establish and apply computational approaches to analyze high-throughput flow cytometry data. The purpose is to find not only canonical populations of immune cells, but also discover novel or rare populations from multi- dimensional flow cytometry data. We will establish an analytical pipeline based on existing and in- development R/Bioconductor tools. RELEVANCE (See instructions): The proposed studies will greatly improve our understanding of human immunity, especially on tissue- specific properties of various important irnmune cells manifested in signature gene expression changes and dynamic clonal expansions. The findings frpm these studies will have direct applications in optimized vaccine designs, treatment of autoimmune diseases; and better control of graft-versus-host diseases.
该核心的主要目标是开发用于分析高通量数据的计算程序

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yufeng Shen其他文献

Yufeng Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yufeng Shen', 18)}}的其他基金

Computational methods to interpret genomic variation and integrate functional genomics data in genetic analysis of human diseases
解释基因组变异并将功能基因组数据整合到人类疾病遗传分析中的计算方法
  • 批准号:
    10623773
  • 财政年份:
    2023
  • 资助金额:
    $ 33.89万
  • 项目类别:
Computational analysis of whole genome sequence data for discovering novel risk genes of structural birth defects
全基因组序列数据的计算分析,以发现结构性出生缺陷的新风险基因
  • 批准号:
    10354418
  • 财政年份:
    2022
  • 资助金额:
    $ 33.89万
  • 项目类别:
Computational analysis of whole genome sequence data for discovering novel risk genes of structural birth defects
全基因组序列数据的计算分析,以发现结构性出生缺陷的新风险基因
  • 批准号:
    10673600
  • 财政年份:
    2022
  • 资助金额:
    $ 33.89万
  • 项目类别:
Integrate cancer genomics data in genetic studies and diagnosis of developmental disorders
将癌症基因组学数据整合到遗传研究和发育障碍的诊断中
  • 批准号:
    10166608
  • 财政年份:
    2017
  • 资助金额:
    $ 33.89万
  • 项目类别:
Integrated Genomics Core
综合基因组核心
  • 批准号:
    10458159
  • 财政年份:
    2017
  • 资助金额:
    $ 33.89万
  • 项目类别:
Integrated Genomics Core
综合基因组核心
  • 批准号:
    10647825
  • 财政年份:
    2017
  • 资助金额:
    $ 33.89万
  • 项目类别:
Integrate cancer genomics data in genetic studies and diagnosis of developmental disorders
将癌症基因组学数据整合到遗传研究和发育障碍的诊断中
  • 批准号:
    9311160
  • 财政年份:
    2017
  • 资助金额:
    $ 33.89万
  • 项目类别:
Bioinformatics & Data Management
生物信息学
  • 批准号:
    10176371
  • 财政年份:
    2013
  • 资助金额:
    $ 33.89万
  • 项目类别:
Bioinformatics & Data Management
生物信息学
  • 批准号:
    10426136
  • 财政年份:
    2013
  • 资助金额:
    $ 33.89万
  • 项目类别:
Bioinformatics
生物信息学
  • 批准号:
    8703320
  • 财政年份:
  • 资助金额:
    $ 33.89万
  • 项目类别:

相似海外基金

Alternative splicing of Grin1 controls NMDA receptor function in physiological and disease processes
Grin1 的选择性剪接控制生理和疾病过程中的 NMDA 受体功能
  • 批准号:
    488788
  • 财政年份:
    2023
  • 资助金额:
    $ 33.89万
  • 项目类别:
    Operating Grants
RBFOX2 deregulation promotes pancreatic cancer progression through alternative splicing
RBFOX2 失调通过选择性剪接促进胰腺癌进展
  • 批准号:
    10638347
  • 财政年份:
    2023
  • 资助金额:
    $ 33.89万
  • 项目类别:
Long Noncoding RNA H19 Mediating Alternative Splicing in ALD Pathogenesis
长非编码 RNA H19 介导 ALD 发病机制中的选择性剪接
  • 批准号:
    10717440
  • 财政年份:
    2023
  • 资助金额:
    $ 33.89万
  • 项目类别:
Using proteogenomics to assess the functional impact of alternative splicing events in glioblastoma
使用蛋白质基因组学评估选择性剪接事件对胶质母细胞瘤的功能影响
  • 批准号:
    10577186
  • 财政年份:
    2023
  • 资助金额:
    $ 33.89万
  • 项目类别:
Alternative splicing regulation of CLTC in the heart
心脏中 CLTC 的选择性剪接调节
  • 批准号:
    10749474
  • 财政年份:
    2023
  • 资助金额:
    $ 33.89万
  • 项目类别:
Nitric oxide as a novel regulator of alternative splicing
一氧化氮作为选择性剪接的新型调节剂
  • 批准号:
    10673458
  • 财政年份:
    2023
  • 资助金额:
    $ 33.89万
  • 项目类别:
Alternative splicing as an evolutionary driver of phenotypic plasticity
选择性剪接作为表型可塑性的进化驱动力
  • 批准号:
    2884151
  • 财政年份:
    2023
  • 资助金额:
    $ 33.89万
  • 项目类别:
    Studentship
Rescuing SYNGAP1 haploinsufficiency by redirecting alternative splicing
通过重定向选择性剪接挽救 SYNGAP1 单倍体不足
  • 批准号:
    10660668
  • 财政年份:
    2023
  • 资助金额:
    $ 33.89万
  • 项目类别:
CAREER: Mechanotransduction, transcription, and alternative splicing in cell biology
职业:细胞生物学中的机械转导、转录和选择性剪接
  • 批准号:
    2239056
  • 财政年份:
    2023
  • 资助金额:
    $ 33.89万
  • 项目类别:
    Continuing Grant
Investigating the role of alternative splicing in the islets of Langerhans in developing diabetes.
研究朗格汉斯岛中选择性剪接在糖尿病发生中的作用。
  • 批准号:
    468851650
  • 财政年份:
    2022
  • 资助金额:
    $ 33.89万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了