Computational analysis of whole genome sequence data for discovering novel risk genes of structural birth defects
全基因组序列数据的计算分析,以发现结构性出生缺陷的新风险基因
基本信息
- 批准号:10673600
- 负责人:
- 金额:$ 15.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAmino AcidsAwardBinding ProteinsBioinformaticsChildClinicalCodeCollaborationsComplexComputer AnalysisComputing MethodologiesCongenital AbnormalityCongenital diaphragmatic herniaCopy Number PolymorphismDataData SetDevelopmentDevelopmental BiologyDiseaseDistalEsophageal AtresiaFirst BirthsFundingGene CombinationsGene ExpressionGenesGeneticGenetic DiseasesGenetic studyGenomeGenomicsGrowthHealthHumanHuman DevelopmentInheritedInterventionLifeLive BirthMachine LearningMalignant Childhood NeoplasmMalignant NeoplasmsMedicalMethodsMolecularNeurodevelopmental DisorderOpen Reading FramesPatientsPopulationPositioning AttributePost-Transcriptional RegulationPropertyProteinsPublicationsRNA-Binding ProteinsRoleSample SizeSpecificityStatistical Data InterpretationStructural Congenital AnomaliesStructureSurvival RateTestingTissuesTracheoesophageal FistulaUntranslated RNAVariantautism spectrum disorderbody systemcandidate identificationcohortcomputerized toolscongenital heart disorderconvolutional neural networkdata integrationde novo mutationdeep learningdevelopmental diseasedisorder riskexomeexome sequencingexperimental studyfallsgenetic analysisgenetic architecturegenome sequencinggenome-widegenomic datagraph neural networkimprovedinsightinterestmutation screeningnovelperformance testspleiotropismpredictive toolsprogramsrare variantrisk varianttoolwhole genome
项目摘要
Project Summary
We aim to improve our understanding of the genetic basis of structural birth defects. To achieve that, we
propose to develop and improve computational methods for interpretation of rare variants and perform integrative
statistical analysis of both protein-coding and noncoding variants to identify new risk genes.
Structural birth defects in aggregation are common in live births. Although the survival rate of patients
with severe birth defects has been dramatically improved in recent decades, many survived patients still have
significant clinical problems later in life, including growth, neurodevelopmental disorders, childhood cancer, and
other health issues. Better understanding of the genetic basis of structural birth defects will lead to new insights
into the cause of these clinical issues and will provide targets for medical intervention and treatment. Recent
large-scale genomic sequencing studies of birth defects, including projects funded by the Gabriella Miller Kids
First (GMKF) program, have identified new risk genes, especially through de novo variants in protein coding
regions. However, the genetics of birth defects is complex. By far, known risk genes only explain 5 to 30% of
common birth defects such as congenital heart disease. The majority of risk genes are unknown. The contribution
to the disease risk from rare inherited variants or noncoding variants is much less known. To investigate these
types of variants effectively and identify new risk genes, we need larger sample size and better computational
tools that improve the prediction of functional impact of rare variants. In this study, we propose two aims to
address these questions by leverage growing GMKF whole genome sequencing (WGS) data sets across cohorts
and latest development in machine learning and other genomic data sets: Specific Aim 1. Develop and improve
computational methods to prioritize damaging rare missense and noncoding variants in genetic studies. Specific
Aim 2. Integrative analysis of rare coding and noncoding variants to identify new risk genes of structural birth
defects.
Our proposed study will identify new risk genes by combining GMKF WGS data sets with other exome or
WGS data of the same birth defects, and in turn improve our understanding of the pleiotropic effects and tissue
specificity of risk genes and variants in birth defects. The new computational and statistical tools for interpreting
rare variants will be broadly applicable to genetic studies of birth defects and other conditions.
项目摘要
我们旨在提高我们对结构性先天缺陷的遗传基础的理解。为此,我们
建议开发和改善计算方法来解释稀有变体并执行综合性
蛋白质编码和非编码变体的统计分析,以鉴定新的风险基因。
汇总的结构出生缺陷在现场出生中很常见。虽然患者的存活率
近几十年来,由于严重的先天缺陷,许多幸存的患者仍然有显着改善
以后生活中的重大临床问题,包括生长,神经发育障碍,儿童癌和
其他健康问题。更好地理解结构性先天缺陷的遗传基础将导致新的见解
成为这些临床问题的原因,并将为医疗干预和治疗提供目标。最近的
出生缺陷的大规模基因组测序研究,包括由Gabriella Miller Kids资助的项目
首先(GMKF)程序已经确定了新的风险基因,尤其是通过蛋白质编码的从头变体
地区。但是,先天缺陷的遗传学很复杂。到目前为止,已知风险基因仅解释5%至30%
常见的先天缺陷,例如先天性心脏病。大多数风险基因尚不清楚。贡献
对于罕见的遗传变体或非编码变体的疾病风险而言,鲜为人知。调查这些
有效的变体类型并识别新的风险基因,我们需要更大的样本量和更好的计算
改善稀有变体功能影响预测的工具。在这项研究中,我们提出了两个目标
通过利用增长的GMKF全基因组测序(WGS)数据集来解决这些问题
以及机器学习和其他基因组数据集的最新发展:特定目的1。开发和改进
在遗传研究中优先考虑损害稀有错义和非编码变体的计算方法。具体的
目标2。稀有编码和非编码变体的综合分析,以识别结构性出生的新风险基因
缺陷。
我们拟议的研究将通过将GMKF WGS数据集与其他外显子组或其他外显子组或
同一先天缺陷的WGS数据,进而提高我们对多效效应和组织的理解
出生缺陷中风险基因和变体的特异性。解释的新计算和统计工具
罕见的变体将广泛地适用于先天缺陷和其他疾病的遗传研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yufeng Shen其他文献
Yufeng Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yufeng Shen', 18)}}的其他基金
Computational methods to interpret genomic variation and integrate functional genomics data in genetic analysis of human diseases
解释基因组变异并将功能基因组数据整合到人类疾病遗传分析中的计算方法
- 批准号:
10623773 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
Computational analysis of whole genome sequence data for discovering novel risk genes of structural birth defects
全基因组序列数据的计算分析,以发现结构性出生缺陷的新风险基因
- 批准号:
10354418 - 财政年份:2022
- 资助金额:
$ 15.96万 - 项目类别:
Integrate cancer genomics data in genetic studies and diagnosis of developmental disorders
将癌症基因组学数据整合到遗传研究和发育障碍的诊断中
- 批准号:
10166608 - 财政年份:2017
- 资助金额:
$ 15.96万 - 项目类别:
Integrate cancer genomics data in genetic studies and diagnosis of developmental disorders
将癌症基因组学数据整合到遗传研究和发育障碍的诊断中
- 批准号:
9311160 - 财政年份:2017
- 资助金额:
$ 15.96万 - 项目类别:
相似国自然基金
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
DeADP-ribosylation of host targets mediated by a bacterial effector
由细菌效应子介导的宿主靶标的 DeADP-核糖基化
- 批准号:
10667971 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
Optical platform for functional longitudinal imaging of metabolite uptake in vivo
用于体内代谢物摄取功能纵向成像的光学平台
- 批准号:
10585764 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别: