Integrate cancer genomics data in genetic studies and diagnosis of developmental disorders
将癌症基因组学数据整合到遗传研究和发育障碍的诊断中
基本信息
- 批准号:9311160
- 负责人:
- 金额:$ 33.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-16 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAutistic DisorderBiological AssayCatalogsCell physiologyChildhoodCollaborationsCommunitiesComputer softwareComputing MethodologiesDataData AnalysesData SetDetectionDiagnosisDiseaseEP300 geneEnsureEpilepsyFamilyGenesGeneticGenetic studyGenomeGenomicsGerm-Line MutationGoalsGrowthInheritedIntellectual functioning disabilityInternationalLaboratoriesMalignant NeoplasmsMendelian disorderMethodsMissense MutationMolecularMutationNeurodevelopmental DisorderNewborn InfantPTEN genePTPN11 genePatientsPatternPropertyReportingResearchSamplingSocietiesSomatic MutationStructural Congenital AnomaliesVariantactionable mutationbasecancer genomecancer genomicscongenital heart disordercost effectivedata sharingdevelopmental diseasedosageepigenomicsexome sequencingfunctional genomicsgenetic disorder diagnosisgenetic variantgenome sequencinggenomic dataimprovedinsightloss of functionnovelprecision oncologyrisk variantsoftware developmenttargeted treatmenttooltumor
项目摘要
Project Summary
We aim to develop novel computational approaches to improve detection of risk genes and prediction
of functional effects of germline mutations in patients with developmental disorders by integrating somatic
cancer mutation and functional genomic data.
Developmental disorders (DD), including neurodevelopmental disorders (NDD) and structural birth
defects, affect ~5% of all newborns and have a significant impact on families and society. In the past few
years, large-scale family-based sequencing studies on DD, such as autism and congenital heart disease, have
identified a large number of de novo variants potentially implicated in disease. Unlike many other pediatric
Mendelian diseases, genetic diagnosis of DD by genome or exome sequencing is more challenging because:
(a) the complete catalog of DD genes (likely ~1,000) is not yet available; (b) observed variants are often
difficult to interpret due to lack of rapid and cost-effective functional assays. Therefore, improved ability to
identify novel risk genes and predict the functional effects of missense variants would significantly improve
our ability to diagnose DD and develop targeted therapeutic approaches. Cancer is driven by dysregulation of
core cellular processes that are also important to DD, such as proliferation, growth, and differentiation. There
are well known genes implicated in both cancer and DD with somatic driver mutations in cancer and highly-
penetrant germline de novo variants in DD. We analyzed data from recent large-scale genomic studies of
cancer and DD, and found a large number of genes potentially implicated in both diseases, and many of them
have similar molecular modes of action across conditions. This indicates that patterns of cancer somatic
mutations can provide valuable insights to improve our ability to identify causal variants and genes in patients
with DD.
To that end, we have these specific aims: Specific Aim 1. Elucidate common genes and variants
disrupted in cancer and DD based on somatic mutations in cancer and germline de novo mutations in DD.
Specific Aim 2. Infer dosage sensitive genes by integrating mutation data in cancer and developmental
disorders with functional genomic data. Specific Aim 3. Software development and data sharing.
With the proposed new computational approaches, we will be able to leverage the accumulating
cancer somatic mutation data from international cancer precision medicine efforts. In this framework, tumor
samples will be natural “laboratories” for large-scale functional assays in cancer driver genes. This strategy
will improve the utility of cross-field genomic data, and allow us to better predict functional effects of
candidate variants (especially missense variants) in genetic diagnosis and identify novel risk genes for
developmental disorders.
项目摘要
我们的目标是开发新的计算方法来改进风险基因的检测和预测
体细胞整合研究生殖系突变对发育障碍患者的功能影响
癌症突变和功能基因组数据。
发育障碍(DD),包括神经发育障碍(NDD)和结构性出生
缺陷,影响了约5%的新生儿,并对家庭和社会产生了重大影响。在过去的几年里
多年来,关于DD的大规模家庭测序研究,如自闭症和先天性心脏病,已经
确定了大量可能与疾病有关的从头变异。与许多其他儿科不同
对于孟德尔病,通过基因组或外显子组测序进行DD的遗传诊断更具挑战性,因为:
(A)尚未获得DD基因的完整目录(可能为~1,000个);(B)观察到的变异通常
由于缺乏快速和经济有效的功能分析,因此难以解释。因此,提高了
识别新的风险基因并预测错义变异的功能效应将显著改善
我们诊断DD和开发有针对性的治疗方法的能力。癌症是由调节失调引起的
对DD也很重要的核心细胞过程,如增殖、生长和分化。那里
都是众所周知的与癌症和DD有关的基因,在癌症和高度...
DD中的穿透性胚系新变种。我们分析了最近大规模基因组研究的数据
癌症和DD,发现了大量可能与这两种疾病有关的基因,其中许多
在不同条件下具有相似的分子作用模式。这表明癌症的体细胞模式
突变可以提供有价值的见解,以提高我们识别患者因果变异和基因的能力
与DD一起。
为此,我们有以下具体目标:具体目标1.阐明共同基因和变异
基于癌症中的体细胞突变和DD中的胚系新突变,在癌症和DD中被破坏。
具体目标2.通过整合癌症和发育过程中的突变数据来推断剂量敏感基因
与功能基因组数据相关的疾病。具体目标3.软件开发和数据共享。
有了拟议的新计算方法,我们将能够利用积累的
来自国际癌症精准医学努力的癌症体细胞突变数据。在这个框架中,肿瘤
样本将成为大规模癌症驱动基因功能分析的天然“实验室”。这一战略
将提高跨领域基因组数据的实用性,并使我们能够更好地预测
基因诊断中的候选变异(特别是错义变异)和识别新的风险基因
发育障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yufeng Shen其他文献
Yufeng Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yufeng Shen', 18)}}的其他基金
Computational methods to interpret genomic variation and integrate functional genomics data in genetic analysis of human diseases
解释基因组变异并将功能基因组数据整合到人类疾病遗传分析中的计算方法
- 批准号:
10623773 - 财政年份:2023
- 资助金额:
$ 33.27万 - 项目类别:
Computational analysis of whole genome sequence data for discovering novel risk genes of structural birth defects
全基因组序列数据的计算分析,以发现结构性出生缺陷的新风险基因
- 批准号:
10354418 - 财政年份:2022
- 资助金额:
$ 33.27万 - 项目类别:
Computational analysis of whole genome sequence data for discovering novel risk genes of structural birth defects
全基因组序列数据的计算分析,以发现结构性出生缺陷的新风险基因
- 批准号:
10673600 - 财政年份:2022
- 资助金额:
$ 33.27万 - 项目类别:
Integrate cancer genomics data in genetic studies and diagnosis of developmental disorders
将癌症基因组学数据整合到遗传研究和发育障碍的诊断中
- 批准号:
10166608 - 财政年份:2017
- 资助金额:
$ 33.27万 - 项目类别:
相似海外基金
Accelerated Magnetic Resonance Elastography for Brain Stiffness Analysis in Children with Classic Autistic Disorder
加速磁共振弹性成像用于经典自闭症儿童脑僵硬分析
- 批准号:
10223915 - 财政年份:2020
- 资助金额:
$ 33.27万 - 项目类别:
Accelerated Magnetic Resonance Elastography for Brain Stiffness Analysis in Children with Classic Autistic Disorder
加速磁共振弹性成像用于经典自闭症儿童脑僵硬分析
- 批准号:
10457950 - 财政年份:2020
- 资助金额:
$ 33.27万 - 项目类别:
Development of PC driven concept learning and achievement evaluation system for the children with autistic disorder
PC驱动的自闭症儿童概念学习和成绩评估系统的开发
- 批准号:
25590285 - 财政年份:2013
- 资助金额:
$ 33.27万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Evaluation of Autistic Disorder using Artificial School Class Game
使用人工学校课堂游戏评估自闭症
- 批准号:
23650117 - 财政年份:2011
- 资助金额:
$ 33.27万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
DENSE MAPPING OF CANDIDATE REGIONS LINKED TO AUTISTIC DISORDER
与自闭症相关的候选区域的密集绘图
- 批准号:
8167215 - 财政年份:2010
- 资助金额:
$ 33.27万 - 项目类别:
DENSE MAPPING OF CANDIDATE REGIONS LINKED TO AUTISTIC DISORDER
与自闭症相关的候选区域的密集绘图
- 批准号:
7951908 - 财政年份:2009
- 资助金额:
$ 33.27万 - 项目类别:
OPEN LABEL RISPERIDONE IN CHILDREN AND ADOLESCENTS WITH AUTISTIC DISORDER
开放标签利培酮用于患有自闭症的儿童和青少年
- 批准号:
7953733 - 财政年份:2009
- 资助金额:
$ 33.27万 - 项目类别:
DENSE MAPPING OF CANDIDATE REGIONS LINKED TO AUTISTIC DISORDER
与自闭症相关的候选区域的密集绘图
- 批准号:
7719250 - 财政年份:2008
- 资助金额:
$ 33.27万 - 项目类别:
A STADY ON THE UNIVERSAL ASSISTIVE TECHNOLOGY DEVICES TO DEVELOP COMMUNICABILITY OF THE PEOPLE WITH MENTAL RETARDETION, AUTISTIC DISORDER AND OTHER DISABILITIES
开发智力低下、自闭症和其他残疾人沟通能力的通用辅助技术设备的研究
- 批准号:
19300281 - 财政年份:2007
- 资助金额:
$ 33.27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
sensorimotor gating processing in autistic disorder ; functional magnetic resonance imaging study
自闭症障碍中的感觉运动门控处理;
- 批准号:
19591348 - 财政年份:2007
- 资助金额:
$ 33.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




