Integrate cancer genomics data in genetic studies and diagnosis of developmental disorders
将癌症基因组学数据整合到遗传研究和发育障碍的诊断中
基本信息
- 批准号:10166608
- 负责人:
- 金额:$ 33.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-16 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectBiological AssayCatalogsCell physiologyChildhoodCollaborationsCommunitiesComputer softwareComputing MethodologiesDataData AnalysesDetectionDiagnosisDiseaseEP300 geneEnsureEpilepsyFamilyGenesGeneticGenetic studyGenomeGenomicsGerm-Line MutationGoalsGrowthHereditary DiseaseIntellectual functioning disabilityInternationalLaboratoriesMalignant NeoplasmsMendelian disorderMethodsMissense MutationMolecularMutationNeurodevelopmental DisorderNewborn InfantPTEN genePTPN11 genePatientsPatternPropertyReportingResearchSamplingSocietiesSomatic MutationStructural Congenital AnomaliesVariantautism spectrum disorderbasecancer genomecancer genomicscausal variantcongenital heart disordercost effectivedata sharingde novo mutationdevelopmental diseasedosagedriver mutationepigenomicsexome sequencingfunctional genomicsgenetic disorder diagnosisgenetic variantgenome sequencinggenomic dataimprovedinsightlarge datasetsloss of functionnovelprecision oncologyrisk predictionrisk variantsoftware developmenttargeted treatmenttooltumor
项目摘要
Project Summary
We aim to develop novel computational approaches to improve detection of risk genes and prediction
of functional effects of germline mutations in patients with developmental disorders by integrating somatic
cancer mutation and functional genomic data.
Developmental disorders (DD), including neurodevelopmental disorders (NDD) and structural birth
defects, affect ~5% of all newborns and have a significant impact on families and society. In the past few
years, large-scale family-based sequencing studies on DD, such as autism and congenital heart disease, have
identified a large number of de novo variants potentially implicated in disease. Unlike many other pediatric
Mendelian diseases, genetic diagnosis of DD by genome or exome sequencing is more challenging because:
(a) the complete catalog of DD genes (likely ~1,000) is not yet available; (b) observed variants are often
difficult to interpret due to lack of rapid and cost-effective functional assays. Therefore, improved ability to
identify novel risk genes and predict the functional effects of missense variants would significantly improve
our ability to diagnose DD and develop targeted therapeutic approaches. Cancer is driven by dysregulation of
core cellular processes that are also important to DD, such as proliferation, growth, and differentiation. There
are well known genes implicated in both cancer and DD with somatic driver mutations in cancer and highly-
penetrant germline de novo variants in DD. We analyzed data from recent large-scale genomic studies of
cancer and DD, and found a large number of genes potentially implicated in both diseases, and many of them
have similar molecular modes of action across conditions. This indicates that patterns of cancer somatic
mutations can provide valuable insights to improve our ability to identify causal variants and genes in patients
with DD.
To that end, we have these specific aims: Specific Aim 1. Elucidate common genes and variants
disrupted in cancer and DD based on somatic mutations in cancer and germline de novo mutations in DD.
Specific Aim 2. Infer dosage sensitive genes by integrating mutation data in cancer and developmental
disorders with functional genomic data. Specific Aim 3. Software development and data sharing.
With the proposed new computational approaches, we will be able to leverage the accumulating
cancer somatic mutation data from international cancer precision medicine efforts. In this framework, tumor
samples will be natural “laboratories” for large-scale functional assays in cancer driver genes. This strategy
will improve the utility of cross-field genomic data, and allow us to better predict functional effects of
candidate variants (especially missense variants) in genetic diagnosis and identify novel risk genes for
developmental disorders.
项目摘要
我们的目标是开发新的计算方法,以提高风险基因的检测和预测
生殖系突变在发育障碍患者中的功能效应,
癌症突变和功能基因组数据。
发育障碍(DD),包括神经发育障碍(NDD)和结构性出生
缺陷,影响到所有新生儿的约5%,并对家庭和社会产生重大影响。过去几
多年来,对DD(如自闭症和先天性心脏病)的大规模基于家庭的测序研究,
鉴定了大量可能与疾病有关的从头变异。与许多其他儿科
孟德尔疾病,通过基因组或外显子组测序进行DD的遗传诊断更具挑战性,因为:
(a)DD基因的完整目录(可能约1,000个)尚不可用;(B)观察到的变异体通常
由于缺乏快速和具有成本效益的功能测定,难以解释。因此,提高能力,
识别新的风险基因并预测错义变异的功能效应将显着提高
我们诊断DD和开发靶向治疗方法的能力。癌症是由以下因素引起的:
核心细胞过程对DD也很重要,如增殖、生长和分化。那里
是与癌症和DD有关的众所周知的基因,在癌症中具有体细胞驱动突变,
DD中的渗透性生殖系从头变异。我们分析了最近大规模基因组研究的数据,
癌症和DD,并发现了大量的基因可能涉及这两种疾病,其中许多
在不同条件下有相似的分子作用模式。这表明癌症的体细胞模式
突变可以提供有价值的见解,以提高我们识别患者中致病变异和基因的能力
关于DD
为此,我们有以下具体目标:具体目标1。阐明共同基因和变异
基于癌症中的体细胞突变和DD中的种系从头突变,
具体目标2。通过整合癌症和发育中的突变数据推断剂量敏感基因
功能性基因组数据的疾病。具体目标3。软件开发和数据共享。
有了新的计算方法,我们将能够利用累积的
癌症体细胞突变数据来自国际癌症精准医学努力。在这个框架下,肿瘤
样本将成为癌症驱动基因大规模功能分析的天然“实验室”。这一战略
将提高跨领域基因组数据的实用性,并使我们能够更好地预测功能性影响,
基因诊断中的候选变异(尤其是错义变异),并确定新的风险基因,
发育障碍
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust identification of mosaic variants in congenital heart disease.
- DOI:10.1007/s00439-018-1871-6
- 发表时间:2018-03
- 期刊:
- 影响因子:5.3
- 作者:Manheimer KB;Richter F;Edelmann LJ;D'Souza SL;Shi L;Shen Y;Homsy J;Boskovski MT;Tai AC;Gorham J;Yasso C;Goldmuntz E;Brueckner M;Lifton RP;Chung WK;Seidman CE;Seidman JG;Gelb BD
- 通讯作者:Gelb BD
A pan-cancer analysis of driver gene mutations, DNA methylation and gene expressions reveals that chromatin remodeling is a major mechanism inducing global changes in cancer epigenomes.
- DOI:10.1186/s12920-018-0425-z
- 发表时间:2018-11-06
- 期刊:
- 影响因子:2.7
- 作者:Youn A;Kim KI;Rabadan R;Tycko B;Shen Y;Wang S
- 通讯作者:Wang S
Predicting functional effect of missense variants using graph attention neural networks.
- DOI:10.1038/s42256-022-00561-w
- 发表时间:2022-11
- 期刊:
- 影响因子:23.8
- 作者:Zhang, Haicang;Xu, Michelle S.;Fan, Xiao;Chung, Wendy K.;Shen, Yufeng
- 通讯作者:Shen, Yufeng
SHINE: protein language model-based pathogenicity prediction for short inframe insertion and deletion variants.
SHINE:基于蛋白质语言模型的短内框插入和缺失变异的致病性预测。
- DOI:10.1093/bib/bbac584
- 发表时间:2023
- 期刊:
- 影响因子:9.5
- 作者:Fan,Xiao;Pan,Hongbing;Tian,Alan;Chung,WendyK;Shen,Yufeng
- 通讯作者:Shen,Yufeng
Template-based prediction of protein structure with deep learning.
- DOI:10.1186/s12864-020-07249-8
- 发表时间:2020-12-29
- 期刊:
- 影响因子:4.4
- 作者:Zhang H;Shen Y
- 通讯作者:Shen Y
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yufeng Shen其他文献
Yufeng Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yufeng Shen', 18)}}的其他基金
Computational methods to interpret genomic variation and integrate functional genomics data in genetic analysis of human diseases
解释基因组变异并将功能基因组数据整合到人类疾病遗传分析中的计算方法
- 批准号:
10623773 - 财政年份:2023
- 资助金额:
$ 33.31万 - 项目类别:
Computational analysis of whole genome sequence data for discovering novel risk genes of structural birth defects
全基因组序列数据的计算分析,以发现结构性出生缺陷的新风险基因
- 批准号:
10354418 - 财政年份:2022
- 资助金额:
$ 33.31万 - 项目类别:
Computational analysis of whole genome sequence data for discovering novel risk genes of structural birth defects
全基因组序列数据的计算分析,以发现结构性出生缺陷的新风险基因
- 批准号:
10673600 - 财政年份:2022
- 资助金额:
$ 33.31万 - 项目类别:
Integrate cancer genomics data in genetic studies and diagnosis of developmental disorders
将癌症基因组学数据整合到遗传研究和发育障碍的诊断中
- 批准号:
9311160 - 财政年份:2017
- 资助金额:
$ 33.31万 - 项目类别:
相似海外基金
Establishment of a new biological assay using Hydra nematocyst deployment
利用水螅刺丝囊部署建立新的生物测定方法
- 批准号:
520728-2017 - 财政年份:2017
- 资助金额:
$ 33.31万 - 项目类别:
University Undergraduate Student Research Awards
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10368760 - 财政年份:2017
- 资助金额:
$ 33.31万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10669539 - 财政年份:2017
- 资助金额:
$ 33.31万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9570142 - 财政年份:2017
- 资助金额:
$ 33.31万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9915803 - 财政年份:2017
- 资助金额:
$ 33.31万 - 项目类别:
COVID-19 Supplemental work: POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER).
COVID-19 补充工作:用于确定组织特异性吸收电离辐射剂量的护理点生物测定(生物剂量计)。
- 批准号:
10259999 - 财政年份:2017
- 资助金额:
$ 33.31万 - 项目类别:
Drug discovery based on a new biological assay system using Yeast knock-out strain collection
基于使用酵母敲除菌株收集的新生物测定系统的药物发现
- 批准号:
21580130 - 财政年份:2009
- 资助金额:
$ 33.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2005
- 资助金额:
$ 33.31万 - 项目类别:
Postdoctoral Fellowships
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2004
- 资助金额:
$ 33.31万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




