Computational analysis of whole genome sequence data for discovering novel risk genes of structural birth defects
全基因组序列数据的计算分析,以发现结构性出生缺陷的新风险基因
基本信息
- 批准号:10354418
- 负责人:
- 金额:$ 15.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAmino AcidsAwardBinding ProteinsBioinformaticsClinicalCodeCollaborationsComplexComputer AnalysisComputing MethodologiesCongenital AbnormalityCongenital diaphragmatic herniaCopy Number PolymorphismDataData SetDevelopmentDevelopmental BiologyDiseaseDistalEsophageal AtresiaFirst BirthsFundingGene ExpressionGenesGeneticGenetic DiseasesGenetic studyGenomeGenomicsGrowthHealthHumanHuman DevelopmentInheritedInterventionLifeLive BirthMachine LearningMalignant Childhood NeoplasmMalignant NeoplasmsMedicalMethodsMolecularNeurodevelopmental DisorderOpen Reading FramesPatientsPopulationPositioning AttributePost-Transcriptional RegulationPropertyProteinsPublicationsRNA-Binding ProteinsRoleSample SizeSpecificityStatistical Data InterpretationStructural Congenital AnomaliesStructureSurvival RateTestingTissuesTracheoesophageal FistulaUntranslated RNAVariantautism spectrum disorderbasebody systemcandidate identificationcohortcomputerized toolscongenital heart disorderconvolutional neural networkde novo mutationdeep learningdevelopmental diseasedisorder riskexomeexome sequencingexperimental studyfallsgenetic analysisgenetic architecturegenetic variantgenome sequencinggenome-widegenomic datagraph neural networkimprovedinsightinterestmutation screeningnovelperformance testspleiotropismpredictive toolsprogramsrare variantrisk varianttoolwhole genome
项目摘要
Project Summary
We aim to improve our understanding of the genetic basis of structural birth defects. To achieve that, we
propose to develop and improve computational methods for interpretation of rare variants and perform integrative
statistical analysis of both protein-coding and noncoding variants to identify new risk genes.
Structural birth defects in aggregation are common in live births. Although the survival rate of patients
with severe birth defects has been dramatically improved in recent decades, many survived patients still have
significant clinical problems later in life, including growth, neurodevelopmental disorders, childhood cancer, and
other health issues. Better understanding of the genetic basis of structural birth defects will lead to new insights
into the cause of these clinical issues and will provide targets for medical intervention and treatment. Recent
large-scale genomic sequencing studies of birth defects, including projects funded by the Gabriella Miller Kids
First (GMKF) program, have identified new risk genes, especially through de novo variants in protein coding
regions. However, the genetics of birth defects is complex. By far, known risk genes only explain 5 to 30% of
common birth defects such as congenital heart disease. The majority of risk genes are unknown. The contribution
to the disease risk from rare inherited variants or noncoding variants is much less known. To investigate these
types of variants effectively and identify new risk genes, we need larger sample size and better computational
tools that improve the prediction of functional impact of rare variants. In this study, we propose two aims to
address these questions by leverage growing GMKF whole genome sequencing (WGS) data sets across cohorts
and latest development in machine learning and other genomic data sets: Specific Aim 1. Develop and improve
computational methods to prioritize damaging rare missense and noncoding variants in genetic studies. Specific
Aim 2. Integrative analysis of rare coding and noncoding variants to identify new risk genes of structural birth
defects.
Our proposed study will identify new risk genes by combining GMKF WGS data sets with other exome or
WGS data of the same birth defects, and in turn improve our understanding of the pleiotropic effects and tissue
specificity of risk genes and variants in birth defects. The new computational and statistical tools for interpreting
rare variants will be broadly applicable to genetic studies of birth defects and other conditions.
项目概要
我们的目标是提高对结构性出生缺陷遗传基础的理解。为了实现这一目标,我们
建议开发和改进解释罕见变异的计算方法并进行综合
对蛋白质编码和非编码变体进行统计分析,以识别新的风险基因。
聚集性结构性出生缺陷在活产中很常见。虽然患者的生存率
近几十年来,严重的出生缺陷得到了显着改善,许多幸存的患者仍然患有
晚年的重大临床问题,包括生长、神经发育障碍、儿童癌症和
其他健康问题。更好地了解结构性出生缺陷的遗传基础将带来新的见解
探究这些临床问题的原因,并为医疗干预和治疗提供目标。最近的
出生缺陷的大规模基因组测序研究,包括由 Gabriella Miller Kids 资助的项目
第一个 (GMKF) 计划已识别出新的风险基因,特别是通过蛋白质编码中的从头变异
地区。然而,出生缺陷的遗传学很复杂。到目前为止,已知的风险基因只能解释 5% 到 30%
常见的出生缺陷,如先天性心脏病。大多数风险基因是未知的。贡献
罕见遗传变异或非编码变异所带来的疾病风险却鲜为人知。为了调查这些
有效地识别变异类型并识别新的风险基因,我们需要更大的样本量和更好的计算能力
改进罕见变异功能影响预测的工具。在这项研究中,我们提出两个目标
通过利用跨队列不断增长的 GMKF 全基因组测序 (WGS) 数据集来解决这些问题
以及机器学习和其他基因组数据集的最新进展:具体目标 1. 开发和改进
在遗传研究中优先考虑破坏性罕见错义和非编码变异的计算方法。具体的
目标 2. 罕见编码和非编码变异的综合分析,以确定新的结构出生风险基因
缺陷。
我们提出的研究将通过将 GMKF WGS 数据集与其他外显子组或
相同出生缺陷的全基因组测序数据,进而提高我们对多效性效应和组织的理解
出生缺陷风险基因和变异的特异性。用于解释的新计算和统计工具
罕见变异将广泛适用于出生缺陷和其他疾病的基因研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yufeng Shen其他文献
Yufeng Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yufeng Shen', 18)}}的其他基金
Computational methods to interpret genomic variation and integrate functional genomics data in genetic analysis of human diseases
解释基因组变异并将功能基因组数据整合到人类疾病遗传分析中的计算方法
- 批准号:
10623773 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
Computational analysis of whole genome sequence data for discovering novel risk genes of structural birth defects
全基因组序列数据的计算分析,以发现结构性出生缺陷的新风险基因
- 批准号:
10673600 - 财政年份:2022
- 资助金额:
$ 15.96万 - 项目类别:
Integrate cancer genomics data in genetic studies and diagnosis of developmental disorders
将癌症基因组学数据整合到遗传研究和发育障碍的诊断中
- 批准号:
10166608 - 财政年份:2017
- 资助金额:
$ 15.96万 - 项目类别:
Integrate cancer genomics data in genetic studies and diagnosis of developmental disorders
将癌症基因组学数据整合到遗传研究和发育障碍的诊断中
- 批准号:
9311160 - 财政年份:2017
- 资助金额:
$ 15.96万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 15.96万 - 项目类别:
Continuing Grant














{{item.name}}会员




