Calibrated Methods for Quantitative PET/CT Imaging

定量 PET/CT 成像的校准方法

基本信息

  • 批准号:
    8311868
  • 负责人:
  • 金额:
    $ 24.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-05-01 至 2014-01-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The overall goal of this STTR project is to develop calibrated 3D quantitative analysis tools that directly support improved quantitative accuracy in clinical trials using PET/CT imaging. Pocket phantom technology will be extended to characterize, perform quality assurance, and improve measurement of PET/CT scans on a per-patient scan basis. We will extend a 2nd generation CT 'pocket phantom', developed by Kitware, to include a PET scanner calibration process, developed by the University of Washington (UW) that is based on National Institute of Standards and Technology (NIST) traceable calibration sources. We will also extend automated algorithms to detect and measure the phantom, and calculate key PET image characteristics. During the Phase I of this SBIR we will demonstrate the feasibility of our approach and identify the components needed to further develop the PET/CT quality assurance system. The Phase II project will conduct a large clinical study and complete all necessary work to market and sell PET/CT calibration and measurement phantoms and analysis services. This proposal is a partnership between Kitware, Inc. and the Imaging Research Laboratory at the University of Washington. Kitware is a leader in quantitative medical imaging algorithm development and the creation and support of open-source imaging software (e.g. VTK, ITK, ParaView). Kitware has successfully developed and deployed CT pocket phantoms to characterize the fundamental imaging characteristics of CT acquisitions. The University of Washington team has extensive experience in PET/CT imaging and participated in the development of the research prototype PET/CT scanner as well as establishment of the PET scanner calibration method using NIST-traceable sources. The specific aims of the research are to: 1. Develop a PET/CT pocket phantom based on a long-lived 68-Ge source with cross calibration to an NIST-traceable dose calibrator source. 2. Develop automated pocket phantom detection and 68-Ge source measurement algorithms. The latter will estimate fundamental PET/CT scanner calibration and resolution properties that can be used to both measure and reduce the variability of PET/CT measurements. 3. Evaluate the performance of the PET/CT pocket phantom in conjunction with the phantom detection and measurement methods in realistic imaging scenarios. PUBLIC HEALTH RELEVANCE: The goal of this project is to develop a PET/CT pocket phantom and automated analysis software for scan specific PET/CT imaging characterization, quality assurance, and to improve quantitative measurements. The proposed methods have the potential to significantly improve image quality and quantitative measurements in PET/CT clinical trials.
描述(由申请人提供):该STTR项目的总体目标是开发校准的3D定量分析工具,直接支持使用PET/CT成像的临床试验中提高定量准确性。将扩展袖珍体模技术,以表征、执行质量保证,并在每个患者扫描的基础上改进PET/CT扫描的测量。我们将扩展由Kitware开发的第二代CT“袖珍体模”,以包括由华盛顿大学(UW)开发的PET扫描仪校准过程,该过程基于美国国家标准与技术研究院(NIST)可追溯校准源。我们还将扩展自动算法来检测和测量体模,并计算关键的PET图像特征。在SBIR的第一阶段,我们将证明我们的方法的可行性,并确定进一步开发PET/CT质量保证体系所需的组件。第二阶段项目将进行一项大型临床研究,并完成所有必要的工作,以市场和销售PET/CT校准和测量模型和分析服务。本提案是Kitware,Inc.和华盛顿大学的成像研究实验室。Kitware是定量医学成像算法开发以及开源成像软件(例如VTK,ITK,ParaView)的创建和支持的领导者。Kitware已成功开发并部署了CT囊袋体模,以表征CT采集的基本成像特征。华盛顿大学团队在PET/CT成像方面拥有丰富的经验,并参与了研究原型PET/CT扫描仪的开发以及使用NIST可追溯源建立PET扫描仪校准方法。本研究的具体目的是:1.开发基于长寿命68-Ge源的PET/CT囊袋体模,并与NIST可追溯剂量校准器源进行交叉校准。2.开发自动囊袋体模检测和68-Ge源测量算法。后者将估计基本的PET/CT扫描仪校准和分辨率属性,这些属性可用于测量和减少PET/CT测量的可变性。3.结合真实成像场景中的体模检测和测量方法,评价PET/CT囊袋体模的性能。 公共卫生相关性:本项目的目标是开发PET/CT囊袋体模和自动分析软件,用于扫描特定PET/CT成像表征、质量保证和改进定量测量。所提出的方法有可能显着提高PET/CT临床试验中的图像质量和定量测量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul E. Kinahan其他文献

Multiparametric Quantitative Imaging in Risk Prediction: Recommendations for Data Acquisition, Technical Performance Assessment, and Model Development and Validation
多参数定量成像在风险预测中的应用:数据采集、技术性能评估以及模型开发和验证的建议
  • DOI:
    10.1016/j.acra.2022.09.018
  • 发表时间:
    2023-02-01
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Erich P. Huang;Gene Pennello;Nandita M. deSouza;Xiaofeng Wang;Andrew J. Buckler;Paul E. Kinahan;Huiman X. Barnhart;Jana G. Delfino;Timothy J. Hall;David L. Raunig;Alexander R. Guimaraes;Nancy A. Obuchowski
  • 通讯作者:
    Nancy A. Obuchowski
Characterization of PET/CT images using texture analysis: the past, the present… any future?
ブリッジ検出器によるDual-Ring OpenPETの画質改善効果の検討
使用桥检测器检查 Dual-Ring OpenPET 的图像质量改善效果
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    田島英朗;山谷泰賀;Paul E. Kinahan
  • 通讯作者:
    Paul E. Kinahan
Semiautomated Extraction of Research Topics and Trends From National Cancer Institute Funding in Radiological Sciences From 2000 to 2020
2000年至2020年从美国国家癌症研究所放射科学资助中半自动提取研究主题和趋势
Multimodality molecular imaging of the lung
  • DOI:
    10.1007/s40336-014-0084-9
  • 发表时间:
    2014-10-16
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Delphine L. Chen;Paul E. Kinahan
  • 通讯作者:
    Paul E. Kinahan

Paul E. Kinahan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul E. Kinahan', 18)}}的其他基金

Characterizing, optimizing, and harmonizing cancer detection with PET imaging
通过 PET 成像表征、优化和协调癌症检测
  • 批准号:
    10579947
  • 财政年份:
    2022
  • 资助金额:
    $ 24.71万
  • 项目类别:
Characterizing, optimizing, and harmonizing cancer detection with PET imaging
通过 PET 成像表征、优化和协调癌症检测
  • 批准号:
    10363601
  • 财政年份:
    2022
  • 资助金额:
    $ 24.71万
  • 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
  • 批准号:
    8657576
  • 财政年份:
    2011
  • 资助金额:
    $ 24.71万
  • 项目类别:
Enabling Ultra Low Dose PET/CT Imaging
实现超低剂量 PET/CT 成像
  • 批准号:
    8543598
  • 财政年份:
    2011
  • 资助金额:
    $ 24.71万
  • 项目类别:
Enabling Ultra Low Dose PET/CT Imaging
实现超低剂量 PET/CT 成像
  • 批准号:
    8338782
  • 财政年份:
    2011
  • 资助金额:
    $ 24.71万
  • 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
  • 批准号:
    8531689
  • 财政年份:
    2011
  • 资助金额:
    $ 24.71万
  • 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
  • 批准号:
    8336825
  • 财政年份:
    2011
  • 资助金额:
    $ 24.71万
  • 项目类别:
Enabling Ultra Low Dose PET/CT Imaging
实现超低剂量 PET/CT 成像
  • 批准号:
    8153598
  • 财政年份:
    2011
  • 资助金额:
    $ 24.71万
  • 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
  • 批准号:
    8230446
  • 财政年份:
    2011
  • 资助金额:
    $ 24.71万
  • 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
  • 批准号:
    8699715
  • 财政年份:
    2011
  • 资助金额:
    $ 24.71万
  • 项目类别:

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 24.71万
  • 项目类别:
    Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
  • 批准号:
    2339197
  • 财政年份:
    2024
  • 资助金额:
    $ 24.71万
  • 项目类别:
    Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
  • 批准号:
    2409279
  • 财政年份:
    2024
  • 资助金额:
    $ 24.71万
  • 项目类别:
    Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
  • 批准号:
    2419386
  • 财政年份:
    2024
  • 资助金额:
    $ 24.71万
  • 项目类别:
    Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
  • 批准号:
    2348571
  • 财政年份:
    2024
  • 资助金额:
    $ 24.71万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    $ 24.71万
  • 项目类别:
    Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
  • 批准号:
    2904511
  • 财政年份:
    2024
  • 资助金额:
    $ 24.71万
  • 项目类别:
    Studentship
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
  • 批准号:
    BB/X014657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.71万
  • 项目类别:
    Research Grant
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
  • 批准号:
    2344424
  • 财政年份:
    2024
  • 资助金额:
    $ 24.71万
  • 项目类别:
    Standard Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
  • 批准号:
    EP/Y028120/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.71万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了