Enabling Ultra Low Dose PET/CT Imaging
实现超低剂量 PET/CT 成像
基本信息
- 批准号:8153598
- 负责人:
- 金额:$ 75.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-27 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAddressAdoptedAffectCardiacClinicalClipComplexContrast MediaDataDetectionDevelopmentDiagnosisDiagnosticDiagnostic ImagingDoseElectronicsError SourcesEvaluationFiltrationFinancial compensationGoalsImageImaging TechniquesIndividualLeadLesionLungManufacturer NameMethodsModelingMorphologic artifactsMotionMotivationNew AgentsNoiseOutcomePathway interactionsPatientsPhasePhotonsPhysicsPhysiologic pulsePositron-Emission TomographyProceduresProtocols documentationRadiationReportingResolutionSamplingScanningSignal TransductionStagingTechniquesTechnologyTherapy Clinical TrialsTomography, Computed, ScannersTracerTranslationsTubeTumor VolumeVariantX-Ray Computed Tomographyattenuationbasecancer imagingcancer therapydetectorimage reconstructionimprovedinnovationinterestlung imagingnoveloncologyrespiratoryresponsestatisticstooltreatment planningtumoruptake
项目摘要
DESCRIPTION (provided by applicant): Imaging of cancer with combined positron emission tomography/computed tomography (PET/CT) scanners has become a standard component of oncology diagnosis and staging. Furthermore, quantitative PET/CT is a valuable tool for assessment of an individual's response to therapy and for clinical trials of novel cancer therapies. PET/CT imaging of the lung and abdomen, however, is generally affected by patient respiratory motion, which can lead to underestimation of tracer concentration within a region of interest, overestimation of tumor volume, and mis-matched PET and CT images that yield attenuation correction errors, registration errors and tumor mis-localization. The first source of error (attenuation mismatch) can be addressed by performing CT-based attenuation correction using respiratory gated CT images that are phase-matched with the respiratory gated PET scans. The second source of error (motion blurring) can be addressed by methods using respiratory motion estimation and/or gating. The problem is that even with the lowest possible CT technique, the radiation dose is unacceptably high for diagnostic imaging procedures. Our goal is to reduce CT radiation dose dramatically, while improving PET image by reducing errors introduced by respiratory motion. This will enable more accurate PET/CT imaging by enabling compensation of respiratory motion induced artifacts. This is goal is feasible due to the requirements for the CT component of PET/CT imaging, which are different than those for diagnostic CT. The methods proposed here will (1) reduce radiation dose from CT-based attenuation correction methods and (2) provide routine and high quality compensation of respiratory motion artifacts in PET/CT imaging. This will improve the capabilities of quantitative PET/CT imaging in the development of badly needed therapies for cancer, in the evaluation of response to therapy by for an individual patient, and where lesion uptake is noted is a clinical report. The impact of respiratory motion for detection, a primary tool in diagnosis and staging is not clear, but has also not been properly evaluated yet. In addition, the ultra low dose CT methods developed here may be useful for other applications, such as pulmonary CT imaging, dynamic CT with contrast or new tracers, PET/CT guided radiation treatment planning, and PET/CT cardiac imaging.
PUBLIC HEALTH RELEVANCE: Our goal is to reduce radiation dose dramatically for images acquired on combined positron emission tomography/computed tomography (PET/CT) scanners, while improving the accuracy of PET image by removing errors introduced by respiratory motion. This will enable more accurate PET/CT imaging by enabling compensation of respiratory motion induced artifacts. This will in turn improve the capabilities of quantitative PET/CT imaging in the development of badly needed therapies for cancer, in the evaluation of response to therapy by for an individual patient, and where lesion uptake is noted is a clinical report.
描述(由申请人提供):使用正电子发射断层扫描/计算机断层扫描(PET/CT)扫描仪进行癌症成像已成为肿瘤诊断和分期的标准组成部分。此外,定量PET/CT是评估个体对治疗的反应和新型癌症治疗的临床试验的有价值的工具。然而,肺和腹部的PET/CT成像通常受到患者呼吸运动的影响,这可能导致低估感兴趣区域内的示踪剂浓度、高估肿瘤体积以及产生衰减校正误差、配准误差和肿瘤错误定位的不匹配的PET和CT图像。第一个误差源(衰减失配)可以通过使用与呼吸门控PET扫描相位匹配的呼吸门控CT图像执行基于CT的衰减校正来解决。第二误差源(运动模糊)可以通过使用呼吸运动估计和/或门控的方法来解决。问题是,即使使用尽可能低的CT技术,辐射剂量对于诊断成像程序也是不可接受的高。我们的目标是显着降低CT辐射剂量,同时通过减少呼吸运动引入的误差来改善PET图像。这将通过实现呼吸运动引起的伪影的补偿来实现更准确的PET/CT成像。这一目标是可行的,因为PET/CT成像的CT组件要求与诊断CT不同。本文提出的方法将(1)减少基于CT的衰减校正方法的辐射剂量,以及(2)提供PET/CT成像中呼吸运动伪影的常规和高质量补偿。这将提高定量PET/CT成像在开发急需的癌症治疗、评价个体患者对治疗的反应以及在临床报告中记录病变摄取的能力。作为诊断和分期的主要工具,呼吸运动对检测的影响尚不清楚,但也尚未得到适当的评价。此外,本文开发的超低剂量CT方法可用于其他应用,例如肺部CT成像、使用对比剂或新示踪剂的动态CT、PET/CT引导的放射治疗计划和PET/CT心脏成像。
公共卫生相关性:我们的目标是减少辐射剂量显着的组合正电子发射断层扫描/计算机断层扫描(PET/CT)扫描仪上采集的图像,同时提高PET图像的准确性,通过消除呼吸运动引入的错误。这将通过实现呼吸运动引起的伪影的补偿来实现更准确的PET/CT成像。这将反过来提高定量PET/CT成像在开发急需的癌症治疗、评价个体患者对治疗的反应以及在临床报告中记录病变摄取的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul E. Kinahan其他文献
Multiparametric Quantitative Imaging in Risk Prediction: Recommendations for Data Acquisition, Technical Performance Assessment, and Model Development and Validation
多参数定量成像在风险预测中的应用:数据采集、技术性能评估以及模型开发和验证的建议
- DOI:
10.1016/j.acra.2022.09.018 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:3.900
- 作者:
Erich P. Huang;Gene Pennello;Nandita M. deSouza;Xiaofeng Wang;Andrew J. Buckler;Paul E. Kinahan;Huiman X. Barnhart;Jana G. Delfino;Timothy J. Hall;David L. Raunig;Alexander R. Guimaraes;Nancy A. Obuchowski - 通讯作者:
Nancy A. Obuchowski
Characterization of PET/CT images using texture analysis: the past, the present… any future?
- DOI:
10.1007/s00259-016-3427-0 - 发表时间:
2016-06-06 - 期刊:
- 影响因子:7.600
- 作者:
Mathieu Hatt;Florent Tixier;Larry Pierce;Paul E. Kinahan;Catherine Cheze Le Rest;Dimitris Visvikis - 通讯作者:
Dimitris Visvikis
ブリッジ検出器によるDual-Ring OpenPETの画質改善効果の検討
使用桥检测器检查 Dual-Ring OpenPET 的图像质量改善效果
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
田島英朗;山谷泰賀;Paul E. Kinahan - 通讯作者:
Paul E. Kinahan
Semiautomated Extraction of Research Topics and Trends From National Cancer Institute Funding in Radiological Sciences From 2000 to 2020
2000年至2020年从美国国家癌症研究所放射科学资助中半自动提取研究主题和趋势
- DOI:
10.1016/j.ijrobp.2025.01.009 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:6.500
- 作者:
Mark H. Nguyen;Peter G. Beidler;Joseph Tsai;August Anderson;Daniel Chen;Paul E. Kinahan;John Kang - 通讯作者:
John Kang
Multimodality molecular imaging of the lung
- DOI:
10.1007/s40336-014-0084-9 - 发表时间:
2014-10-16 - 期刊:
- 影响因子:1.600
- 作者:
Delphine L. Chen;Paul E. Kinahan - 通讯作者:
Paul E. Kinahan
Paul E. Kinahan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul E. Kinahan', 18)}}的其他基金
Characterizing, optimizing, and harmonizing cancer detection with PET imaging
通过 PET 成像表征、优化和协调癌症检测
- 批准号:
10579947 - 财政年份:2022
- 资助金额:
$ 75.08万 - 项目类别:
Characterizing, optimizing, and harmonizing cancer detection with PET imaging
通过 PET 成像表征、优化和协调癌症检测
- 批准号:
10363601 - 财政年份:2022
- 资助金额:
$ 75.08万 - 项目类别:
Calibrated Methods for Quantitative PET/CT Imaging
定量 PET/CT 成像的校准方法
- 批准号:
8311868 - 财政年份:2012
- 资助金额:
$ 75.08万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8657576 - 财政年份:2011
- 资助金额:
$ 75.08万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8531689 - 财政年份:2011
- 资助金额:
$ 75.08万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8336825 - 财政年份:2011
- 资助金额:
$ 75.08万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8230446 - 财政年份:2011
- 资助金额:
$ 75.08万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8699715 - 财政年份:2011
- 资助金额:
$ 75.08万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 75.08万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 75.08万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 75.08万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 75.08万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 75.08万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 75.08万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 75.08万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 75.08万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 75.08万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 75.08万 - 项目类别:
Research Grant