Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
基本信息
- 批准号:8657576
- 负责人:
- 金额:$ 12.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-21 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:Advanced Malignant NeoplasmBiological ModelsCalibrationCaringCategoriesCellularityCharacteristicsClinicalClinical ManagementClinical TrialsCollectionComputer SimulationDataDatabasesDevelopmentDiffusionDiffusion Magnetic Resonance ImagingDiseaseEffectivenessFunctional ImagingGlioblastomaGliomaGoalsGrowthHypoxiaImageImaging DeviceIndividualKineticsMagnetic Resonance ImagingMalignant NeoplasmsMeasurementMeasuresMethodologyMethodsMetricModelingNecrosisOutcomePatientsPositron-Emission TomographyPrimary Brain NeoplasmsRelative (related person)Research PersonnelResourcesScanningSimulateSystemTestingTimeTissuesTumor AngiogenesisUncertaintyWeightangiogenesisbasecancer imagingeffective therapyimage reconstructionimaging modalityinsightmathematical modelmultimodalitynoveloutcome forecastpredictive modelingprognosticprospectiveresponsesimulationthree-dimensional modelingtooltool developmenttreatment effecttreatment responsetumortumor progressionvirtual
项目摘要
We are integrating the mathematical modeling of tumor proliferation and invasion with advanced associated with dismal prognoses. Because of the relative inaccessibility of tissue, the clinical management of gliomas are strongly directed by imaging, thus tools integrating changes on imaging with a dynamic understanding of the cancer system are sorely needed. The goals of our project are twofold: To impact current clinical challenges with treatment of gliomas, and to provide tools for the development of new therapies for these challenging cancers.
Our first goal is to develop image-based response metrics based on the growth kinetics of each patient's tumor, as seen on both anatomical imaging (MR) and functional imaging (PET and advanced MR). We will use mathematical modeling to develop a patient-specific Untreated Virtual Imaging Control (UVIC) that quantifies the dynamics of each patient's tumor system. We will then test the UVIC model against a novel set of paired PET and MR images at multiple time-points (five on average) for each of 20 glioblastoma patients. The paired images will be acquired throughout the course of therapy and compared with the UVIC predicted images of hypoxia (FMISO-PET), necrosis (T1-Gd MR) and cellularity (DWI MR).
The second, and overall, goal of this project is to extend the UVIC model to the early response assessment of individual patients in clinical trials. This will provide a tool for the development of much-needed therapies that are more effective for gliomas. The methodologies developed in the project could be extended by refining the biological modeling, and could also be applied to other cancers by the use of appropriate growth kinetic models.
我们正在整合肿瘤增殖和侵袭的数学模型与先进的与令人沮丧的肿瘤。由于组织的相对不可接近性,胶质瘤的临床管理强烈地由成像指导,因此迫切需要将成像变化与对癌症系统的动态理解相结合的工具。我们的项目有两个目标:通过治疗神经胶质瘤来影响当前的临床挑战,并为这些具有挑战性的癌症开发新疗法提供工具。
我们的第一个目标是根据每个患者肿瘤的生长动力学开发基于图像的反应指标,如解剖成像(MR)和功能成像(PET和高级MR)所示。我们将使用数学建模来开发一个患者特定的未经治疗的虚拟成像控制(UVIC),量化每个患者的肿瘤系统的动态。然后,我们将测试UVIC模型对一组新的配对PET和MR图像在多个时间点(平均5)为20例胶质母细胞瘤患者。在整个治疗过程中采集配对图像,并与UVIC预测的缺氧(FMISO-PET)、坏死(T1-Gd MR)和细胞构成(DWI MR)图像进行比较。
该项目的第二个总体目标是将UVIC模型扩展到临床试验中个体患者的早期反应评估。这将为开发对胶质瘤更有效的急需疗法提供工具。该项目中开发的方法可以通过改进生物建模来扩展,也可以通过使用适当的生长动力学模型来应用于其他癌症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul E. Kinahan其他文献
Multiparametric Quantitative Imaging in Risk Prediction: Recommendations for Data Acquisition, Technical Performance Assessment, and Model Development and Validation
多参数定量成像在风险预测中的应用:数据采集、技术性能评估以及模型开发和验证的建议
- DOI:
10.1016/j.acra.2022.09.018 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:3.900
- 作者:
Erich P. Huang;Gene Pennello;Nandita M. deSouza;Xiaofeng Wang;Andrew J. Buckler;Paul E. Kinahan;Huiman X. Barnhart;Jana G. Delfino;Timothy J. Hall;David L. Raunig;Alexander R. Guimaraes;Nancy A. Obuchowski - 通讯作者:
Nancy A. Obuchowski
Characterization of PET/CT images using texture analysis: the past, the present… any future?
- DOI:
10.1007/s00259-016-3427-0 - 发表时间:
2016-06-06 - 期刊:
- 影响因子:7.600
- 作者:
Mathieu Hatt;Florent Tixier;Larry Pierce;Paul E. Kinahan;Catherine Cheze Le Rest;Dimitris Visvikis - 通讯作者:
Dimitris Visvikis
ブリッジ検出器によるDual-Ring OpenPETの画質改善効果の検討
使用桥检测器检查 Dual-Ring OpenPET 的图像质量改善效果
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
田島英朗;山谷泰賀;Paul E. Kinahan - 通讯作者:
Paul E. Kinahan
Semiautomated Extraction of Research Topics and Trends From National Cancer Institute Funding in Radiological Sciences From 2000 to 2020
2000年至2020年从美国国家癌症研究所放射科学资助中半自动提取研究主题和趋势
- DOI:
10.1016/j.ijrobp.2025.01.009 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:6.500
- 作者:
Mark H. Nguyen;Peter G. Beidler;Joseph Tsai;August Anderson;Daniel Chen;Paul E. Kinahan;John Kang - 通讯作者:
John Kang
Multimodality molecular imaging of the lung
- DOI:
10.1007/s40336-014-0084-9 - 发表时间:
2014-10-16 - 期刊:
- 影响因子:1.600
- 作者:
Delphine L. Chen;Paul E. Kinahan - 通讯作者:
Paul E. Kinahan
Paul E. Kinahan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul E. Kinahan', 18)}}的其他基金
Characterizing, optimizing, and harmonizing cancer detection with PET imaging
通过 PET 成像表征、优化和协调癌症检测
- 批准号:
10579947 - 财政年份:2022
- 资助金额:
$ 12.1万 - 项目类别:
Characterizing, optimizing, and harmonizing cancer detection with PET imaging
通过 PET 成像表征、优化和协调癌症检测
- 批准号:
10363601 - 财政年份:2022
- 资助金额:
$ 12.1万 - 项目类别:
Calibrated Methods for Quantitative PET/CT Imaging
定量 PET/CT 成像的校准方法
- 批准号:
8311868 - 财政年份:2012
- 资助金额:
$ 12.1万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8531689 - 财政年份:2011
- 资助金额:
$ 12.1万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8336825 - 财政年份:2011
- 资助金额:
$ 12.1万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8230446 - 财政年份:2011
- 资助金额:
$ 12.1万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8699715 - 财政年份:2011
- 资助金额:
$ 12.1万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 12.1万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 12.1万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 12.1万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 12.1万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 12.1万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 12.1万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 12.1万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 12.1万 - 项目类别:














{{item.name}}会员




