Enabling Ultra Low Dose PET/CT Imaging
实现超低剂量 PET/CT 成像
基本信息
- 批准号:8338782
- 负责人:
- 金额:$ 72.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-27 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAddressAdoptedAffectCardiacClinicalClipComplexContrast MediaDataDetectionDevelopmentDiagnosisDiagnosticDiagnostic ImagingDoseElectronicsError SourcesEvaluationFiltrationFinancial compensationGoalsImageImaging TechniquesIndividualLeadLesionLungManufacturer NameMethodsModelingMorphologic artifactsMotionMotivationNew AgentsNoiseOutcomePathway interactionsPatientsPhasePhotonsPhysicsPhysiologic pulsePositron-Emission TomographyProceduresProtocols documentationRadiationReportingResolutionSamplingScanningSignal TransductionStagingTechniquesTechnologyTherapy Clinical TrialsTomography, Computed, ScannersTracerTranslationsTubeTumor VolumeVariantX-Ray Computed Tomographyattenuationbasecancer imagingcancer therapydetectorimage reconstructionimprovedinnovationinterestlung imagingnoveloncologyrespiratoryresponsestatisticstooltreatment planningtumoruptake
项目摘要
DESCRIPTION (provided by applicant): Imaging of cancer with combined positron emission tomography/computed tomography (PET/CT) scanners has become a standard component of oncology diagnosis and staging. Furthermore, quantitative PET/CT is a valuable tool for assessment of an individual's response to therapy and for clinical trials of novel cancer therapies. PET/CT imaging of the lung and abdomen, however, is generally affected by patient respiratory motion, which can lead to underestimation of tracer concentration within a region of interest, overestimation of tumor volume, and mis-matched PET and CT images that yield attenuation correction errors, registration errors and tumor mis-localization. The first source of error (attenuation mismatch) can be addressed by performing CT-based attenuation correction using respiratory gated CT images that are phase-matched with the respiratory gated PET scans. The second source of error (motion blurring) can be addressed by methods using respiratory motion estimation and/or gating. The problem is that even with the lowest possible CT technique, the radiation dose is unacceptably high for diagnostic imaging procedures. Our goal is to reduce CT radiation dose dramatically, while improving PET image by reducing errors introduced by respiratory motion. This will enable more accurate PET/CT imaging by enabling compensation of respiratory motion induced artifacts. This is goal is feasible due to the requirements for the CT component of PET/CT imaging, which are different than those for diagnostic CT. The methods proposed here will (1) reduce radiation dose from CT-based attenuation correction methods and (2) provide routine and high quality compensation of respiratory motion artifacts in PET/CT imaging. This will improve the capabilities of quantitative PET/CT imaging in the development of badly needed therapies for cancer, in the evaluation of response to therapy by for an individual patient, and where lesion uptake is noted is a clinical report. The impact of respiratory motion for detection, a primary tool in diagnosis and staging is not clear, but has also not been properly evaluated yet. In addition, the ultra low dose CT methods developed here may be useful for other applications, such as pulmonary CT imaging, dynamic CT with contrast or new tracers, PET/CT guided radiation treatment planning, and PET/CT cardiac imaging.
描述(由申请人提供):具有正电子发射断层扫描/计算机断层扫描(PET/CT)扫描仪的癌症成像已成为肿瘤学诊断和分期的标准组成部分。此外,定量PET/CT是评估个人对治疗的反应和新型癌症治疗临床试验的宝贵工具。然而,肺和腹部的PET/CT成像通常受患者呼吸运动的影响,这可能导致在感兴趣的区域内,肿瘤体积高估以及错误匹配的PET和CT图像在示踪剂浓度中低估,并产生衰减校正校正,注册错误和肿瘤误差。可以通过使用呼吸门控的CT图像进行基于CT的衰减校正来解决误差的第一个源(衰减不匹配),这些CT校正与呼吸门控PET扫描相匹配。可以使用呼吸运动估计和/或门控的方法来解决第二个误差源(运动模糊)。问题在于,即使使用最低的CT技术,对于诊断成像程序,辐射剂量的高度也很高。我们的目标是大大减少CT辐射剂量,同时通过减少呼吸运动引入的错误来改善PET图像。通过实现呼吸运动引起的伪影的补偿,这将使更准确的PET/CT成像。由于对PET/CT成像的CT组件的要求,这是可行的,该目标与诊断CT不同。这里提出的方法将(1)减少基于CT的衰减校正方法的辐射剂量,(2)在PET/CT成像中提供了呼吸运动伪像的常规和高质量补偿。这将提高定量PET/CT成像的能力,以开发不需要的癌症疗法,评估单个患者对治疗的反应,并且注意到病变摄取的情况是临床报告。呼吸运动对检测的影响,诊断和分期的主要工具尚不清楚,但尚未正确评估。此外,此处开发的超低剂量CT方法可能对其他应用有用,例如肺CT成像,具有对比度或新示踪剂的动态CT,PET/CT引导的放射治疗计划以及PET/CT心脏成像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul E. Kinahan其他文献
ブリッジ検出器によるDual-Ring OpenPETの画質改善効果の検討
使用桥检测器检查 Dual-Ring OpenPET 的图像质量改善效果
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
田島英朗;山谷泰賀;Paul E. Kinahan - 通讯作者:
Paul E. Kinahan
Paul E. Kinahan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul E. Kinahan', 18)}}的其他基金
Characterizing, optimizing, and harmonizing cancer detection with PET imaging
通过 PET 成像表征、优化和协调癌症检测
- 批准号:
10579947 - 财政年份:2022
- 资助金额:
$ 72.37万 - 项目类别:
Characterizing, optimizing, and harmonizing cancer detection with PET imaging
通过 PET 成像表征、优化和协调癌症检测
- 批准号:
10363601 - 财政年份:2022
- 资助金额:
$ 72.37万 - 项目类别:
Calibrated Methods for Quantitative PET/CT Imaging
定量 PET/CT 成像的校准方法
- 批准号:
8311868 - 财政年份:2012
- 资助金额:
$ 72.37万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8657576 - 财政年份:2011
- 资助金额:
$ 72.37万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8531689 - 财政年份:2011
- 资助金额:
$ 72.37万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8336825 - 财政年份:2011
- 资助金额:
$ 72.37万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8230446 - 财政年份:2011
- 资助金额:
$ 72.37万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8699715 - 财政年份:2011
- 资助金额:
$ 72.37万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Real-time Volumetric Imaging for Motion Management and Dose Delivery Verification
用于运动管理和剂量输送验证的实时体积成像
- 批准号:
10659842 - 财政年份:2023
- 资助金额:
$ 72.37万 - 项目类别:
Integration of non-invasive deep tissue microwave thermometry in the VectRx hyperthermia device in a transgenic liver tumor pig model
在转基因肝肿瘤猪模型中将非侵入性深部组织微波测温技术集成到 VectRx 热疗装置中
- 批准号:
10697183 - 财政年份:2023
- 资助金额:
$ 72.37万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 72.37万 - 项目类别:
Evaluation of extracellular matrix gel for adhesion prevention and tissue healing intendon surgery
细胞外基质凝胶预防粘连和组织愈合意向手术的评价
- 批准号:
10482261 - 财政年份:2022
- 资助金额:
$ 72.37万 - 项目类别:
Clinical and Biological Factors Predicting Lung Transplant Textbook Outcomes (U01)
预测肺移植教科书结果的临床和生物学因素(U01)
- 批准号:
10677558 - 财政年份:2022
- 资助金额:
$ 72.37万 - 项目类别: