Silica-protein nanocomposites for dental repair
用于牙齿修复的二氧化硅-蛋白质纳米复合材料
基本信息
- 批准号:8658422
- 负责人:
- 金额:$ 34.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelAreaBindingBiocompatible MaterialsBiologicalBiomedical EngineeringBone RegenerationBone TissueBone remodelingChemicalsChemistryChimera organismChimeric ProteinsCollagenDefectDentalDental ImplantsDrug FormulationsFamilyFosteringFoundationsGoalsGrantHybridsHydroxyapatitesImplantIn VitroInfectionInfection ControlMandibleMetalsModelingMorphologyNatural regenerationOryctolagus cuniculusOsteogenesisOutcomePeptidesPhasePhysiologicalProcessProductionPropertyProteinsPublishingSeriesShapesSilicon DioxideSilkStructureSystemTissuesTitaniaTitaniumUp-RegulationVariantantimicrobialbasebiomaterial compatibilitybonebone repair materialcraniofacialcraniofacial repairdesignexperienceimprovedin vivoinsightinterfacialnanocompositenanoscalenovelnovel strategiesosteogenicpublic health relevancereconstructionrepairedresponserestorationscaffoldsuccesstibiatissue regenerationtissue repair
项目摘要
DESCRIPTION (provided by applicant): There is a major need for biomaterials that provide improved regeneration of craniofacial tissue and dental defects, where control of interfaces and osteogenesis can be tailored. Specifically, bone regeneration and titanium-bone interfaces are two key areas where improvements in interfacial bonding and bone remodeling are in need of advancements. In this renewal proposal, we build upon our progress in the current grant where we established the foundation for a new family of highly tailored biomaterials for bone regeneration based on silk-silica nanocomposites. Specifically, control of the organic (silk) and inorganic (silica) domains, based on bioengineering and chemistry approaches, and subsequent success in bone regeneration, lays the groundwork for this renewal. Our hypothesis is that this bioengineering approach to biomaterial design, and in particular organic-inorganic nanocomposite systems, can be exploited towards the design of multifunctional biomaterial systems for bone tissue regeneration. Tight control of chemistry, sequence, assembly and material functions (osteogenesis) can be tailored using this approach. We plan to expand the functional features of this new family of chimeric proteins by adding selective bone binding and titanium binding peptides to optimize interfaces, and also include antimicrobial components. These new systems will be evaluated in vitro related to osteogenic markers from hMSCs and mechanisms, and then in vivo in animal models to explore bone interfaces, bone formation and titanium anchoring in bone, as critical needs in the craniofacial and dental fields. The ability to
tailor the chemistry and structure of such highly controlled multifunctional biomaterials to regulate the size and morphology of the silica phase, allows the formation of nano-scale composites required in craniofacial and dental repair scenarios. We plan to expand these systems with new functions to provide a novel path forward for improved interfaces in concert with the silica components, such that a new family of biomaterial scaffold designs will be achieved to match craniofacial and dental repair needs. The unprecedented control of all features of these novel chimeric protein biomaterials, due to the design features embedded in the bioengineering approach, has implications for a wide range of new biomaterials for tissue interfaces and tissue regeneration.
描述(由申请人提供):主要需要能够改善颅面组织和牙齿缺损再生的生物材料,其中可以定制界面和成骨的控制。具体而言,骨再生和钛-骨界面是界面结合和骨重建需要改进的两个关键领域。在这项更新提案中,我们建立在当前赠款的基础上,我们为基于丝-二氧化硅纳米复合材料的高度定制的骨再生生物材料新家族奠定了基础。具体而言,基于生物工程和化学方法的有机(丝)和无机(二氧化硅)结构域的控制,以及随后在骨再生方面的成功,为这种更新奠定了基础。我们的假设是,这种生物工程方法的生物材料设计,特别是有机-无机纳米复合材料系统,可以利用对骨组织再生的多功能生物材料系统的设计。化学、序列、组装和材料功能(成骨)的严格控制可以使用这种方法来定制。我们计划通过添加选择性骨结合肽和钛结合肽来优化界面,并包括抗菌成分来扩展这种新的嵌合蛋白家族的功能特征。这些新系统将在体外评估与hMSCs成骨标志物和机制相关的,然后在体内动物模型中探索骨界面,骨形成和骨中的钛锚定,作为颅面和牙科领域的关键需求。的能力
定制这种高度受控的多功能生物材料的化学和结构以调节二氧化硅相的尺寸和形态,允许形成颅面和牙齿修复方案中所需的纳米级复合材料。我们计划用新功能扩展这些系统,为与二氧化硅组分相一致的改进界面提供一条新的前进道路,从而实现一系列新的生物材料支架设计,以满足颅面和牙齿修复需求。由于生物工程方法中嵌入的设计特征,这些新型嵌合蛋白生物材料的所有特征的前所未有的控制对用于组织界面和组织再生的广泛的新型生物材料具有影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID L. KAPLAN其他文献
DAVID L. KAPLAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID L. KAPLAN', 18)}}的其他基金
2023 Silk Proteins and the Transition to Biotechnologies Gordon Research Conference
2023 年丝蛋白和向生物技术的过渡戈登研究会议
- 批准号:
10681751 - 财政年份:2023
- 资助金额:
$ 34.03万 - 项目类别:
Functional three dimensional brain-like tissues to study mechanisms of traumatic brain injury
功能性三维类脑组织用于研究创伤性脑损伤的机制
- 批准号:
8942566 - 财政年份:2015
- 资助金额:
$ 34.03万 - 项目类别:
Functional three dimensional brain-like tissues to study mechanisms of traumatic brain injury
功能性三维类脑组织用于研究创伤性脑损伤的机制
- 批准号:
9266832 - 财政年份:2015
- 资助金额:
$ 34.03万 - 项目类别:
Multifunctional Tropoelastin-Silk Biomaterial Systems
多功能原弹性蛋白-丝生物材料系统
- 批准号:
8518096 - 财政年份:2012
- 资助金额:
$ 34.03万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 34.03万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 34.03万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 34.03万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 34.03万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 34.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 34.03万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 34.03万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 34.03万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 34.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 34.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists