Metabolic Regulation of Sodium Channels

钠通道的代谢调节

基本信息

  • 批准号:
    8733197
  • 负责人:
  • 金额:
    $ 38.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-15 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Despite extensive research and novel treatments, conditions associated with deranged cardiac metabolism such as heart failure (HF) or ischemia are still associated with a substantial risk of arrhythmic sudden death. Cardiac injury from many causes is associated with altered metabolism and downregulation of the cardiac sodium channel (SCN5A). Recently, data demonstrated that the SCN5A was substantially and immediately modulated by pyridine nucleotides. Physiologically relevant elevations in intracellular NADH resulted in a rapid decrease in INa in both HEK cells and cardiomyocytes that was large enough to be clinically significant. The immediacy of the NADH effect on reducing INa and the lack of change in mRNA abundances under various experimental conditions suggested that the effect of NADH was post-transcriptional. Internally or externally applied NAD+ antagonized the downregulation of current seen with a rise of internal NADH. The finding that the balance of oxidized and reduced pyridine nucleotides regulates the Na+ current suggests that the metabolic state of myocytes may influence INa. The results identify a heretofore unknown regulation of cardiac Na+ channels that may help explain the link between metabolism and arrhythmic risk and may suggest that NAD+ could lessen arrhythmic risk resulting from reduced INa. This application proposes to extend these findings to better understand the mechanism whereby changes in pyridine nucleotides cause SCN5A regulation and to establish the relevance of these changes to arrhythmogenesis in myopathy models. Specific Objectives. Specific aim 1: To determine the mechanism by which NADH acts on the Na+ channel to mediate downregulation of INa. These experiments will differentiate between two leading hypotheses for how NADH mediates its effects on the Na+ channel, either by direct action on the channel complex or by causing channel isolation from the sarcolemma. Insight into Na+ channel regulation may allow mitigation of arrhythmic risk associated with low INa states. Specific aim 2: To determine which proteins are modified in the mitochondrial electron transport chain (ETC) by NADH and NAD+. As we have recently shown, the effects of NADH and NAD+ on mitochondrial ROS production are kinase dependent. Our preliminary data show that NADH activates mitochondrial ROS production via PKC, and NAD+ prevents this via PKA. Using ETC inhibitors and activators, we localized the source of ROS to either complexes I or III.17 We propose to use proteomic techniques to establish if PKA and PKC phosphorylate these complexes and whether that phosphorylation results in alteration of mitochondrial respiration, complex activity, or ROS production to better understand the mechanisms regulating mitochondrial ROS production. Specific aim 3: To determine whether NAD+ can mitigate reduced INa in ischemic and nonischemic cardiomyopathy models. Our preliminary data suggests that NAD+ may serve to mitigate arrhythmic risk in states where INa is decreased. We will test this hypothesis in two cardiomyopathy models as preliminary data for NAD+ use in humans.
描述(由申请人提供):尽管有广泛的研究和新的治疗方法,但与心脏代谢紊乱相关的疾病,如心力衰竭(HF)或缺血,仍与心律失常猝死的巨大风险有关。多种原因引起的心脏损伤与新陈代谢改变和心脏钠通道(SCN5A)下调有关。最近的数据表明,SCN5A基本上并立即受到吡啶核苷酸的调控。生理上相关的细胞内NADH升高导致HEK细胞和心肌细胞中INA的迅速下降,其幅度大到足以具有临床意义。在不同的实验条件下,NADH对降低INA的作用是即刻的,并且在mRNA丰度上没有变化,这表明NADH的作用是转录后的。内服或外用NAD+均可拮抗内源性NADH升高引起的电流下调。研究发现,氧化和还原的吡啶核苷酸平衡调节Na+电流,提示心肌细胞的代谢状态可能影响INA。这些结果确认了一种迄今未知的对心肌Na+通道的调节,这可能有助于解释新陈代谢与心律失常风险之间的联系,并可能表明NAD+可以减少因INA减少而导致的心律失常风险。这项应用建议扩展这些发现,以更好地理解吡啶核苷酸的变化导致SCN5A调节的机制,并在肌病模型中建立这些变化与心律失常发生的相关性。具体目标。具体目的1:确定NADH作用于Na+通道介导INA下调的机制。这些实验将区分两种主要的假说,即NADH如何通过直接作用于通道复合体或通过导致通道与肌膜隔离来调节其对Na+通道的影响。深入了解Na+通道调节可能有助于缓解与低INa状态相关的心律失常风险。具体目的2:确定线粒体电子传递链(ETC)中哪些蛋白质被NADH和NAD+修饰。我们最近发现,NADH和NAD+对线粒体ROS产生的影响是依赖于激酶的。我们的初步数据显示,NADH通过PKC激活线粒体ROS的产生,而NAD+通过PKA阻止这一过程。使用ETC抑制剂和激活剂,我们将ROS的来源定位为复合体I或III。17我们建议使用蛋白质组学技术来确定PKA和PKC是否磷酸化这些复合体,以及这种磷酸化是否导致线粒体呼吸、复合体活性或ROS产生的改变,以更好地了解调控线粒体ROS产生的机制。具体目的3:确定NAD+是否能减轻缺血性和非缺血性心肌病模型中INA的减少。我们的初步数据表明,在INA降低的状态下,NAD+可能有助于减轻心律失常的风险。我们将在两个心肌病模型中测试这一假设,作为NAD+在人类中使用的初步数据。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Obstructive Sleep Apnea and Circulating Potassium Channel Levels.
  • DOI:
    10.1161/jaha.116.003666
  • 发表时间:
    2016-08-19
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Jiang N;Zhou A;Prasad B;Zhou L;Doumit J;Shi G;Imran H;Kaseer B;Millman R;Dudley SC Jr
  • 通讯作者:
    Dudley SC Jr
Reduced sarcoplasmic reticulum Ca2+ pump activity is antiarrhythmic in ischemic cardiomyopathy.
肌浆网 Ca2 泵活性降低在缺血性心肌病中具有抗心律失常作用。
  • DOI:
    10.1016/j.hrthm.2022.08.022
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Xie,An;Liu,Hong;Kang,Gyeoung-Jin;Feng,Feng;DudleyJr,SamuelC
  • 通讯作者:
    DudleyJr,SamuelC
TRPM7 kinase mediates hypomagnesemia-induced seizure-related death.
  • DOI:
    10.1038/s41598-023-34789-2
  • 发表时间:
    2023-05-15
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
Magnesium Deficiency Causes a Reversible, Metabolic, Diastolic Cardiomyopathy.
  • DOI:
    10.1161/jaha.120.020205
  • 发表时间:
    2021-06-15
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Liu M;Liu H;Feng F;Xie A;Kang GJ;Zhao Y;Hou CR;Zhou X;Dudley SC Jr
  • 通讯作者:
    Dudley SC Jr
Mitochondrial dysfunction causing cardiac sodium channel downregulation in cardiomyopathy.
  • DOI:
    10.1016/j.yjmcc.2012.10.011
  • 发表时间:
    2013-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Liu M;Gu L;Sulkin MS;Liu H;Jeong EM;Greener I;Xie A;Efimov IR;Dudley SC Jr
  • 通讯作者:
    Dudley SC Jr
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAMUEL C DUDLEY其他文献

SAMUEL C DUDLEY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAMUEL C DUDLEY', 18)}}的其他基金

Resolution of inflammation and atrial fibrillation
炎症和心房颤动的解决
  • 批准号:
    10679718
  • 财政年份:
    2023
  • 资助金额:
    $ 38.87万
  • 项目类别:
Magnesium, mitochondria, and diastolic dysfunction
镁、线粒体和舒张功能障碍
  • 批准号:
    10705354
  • 财政年份:
    2022
  • 资助金额:
    $ 38.87万
  • 项目类别:
Unfolded Protein Response and Arrhythmias
未折叠的蛋白质反应和心律失常
  • 批准号:
    9977253
  • 财政年份:
    2017
  • 资助金额:
    $ 38.87万
  • 项目类别:
A blood test to predict sudden death risk
预测猝死风险的血液测试
  • 批准号:
    8392935
  • 财政年份:
    2012
  • 资助金额:
    $ 38.87万
  • 项目类别:
Na+ channel mRNA splicing in heart failure
心力衰竭中的 Na 通道 mRNA 剪接
  • 批准号:
    8318101
  • 财政年份:
    2011
  • 资助金额:
    $ 38.87万
  • 项目类别:
Na+ channel mRNA splicing in heart failure
心力衰竭中的 Na 通道 mRNA 剪接
  • 批准号:
    8676905
  • 财政年份:
    2011
  • 资助金额:
    $ 38.87万
  • 项目类别:
Na+ channel mRNA splicing in heart failure
心力衰竭中的 Na 通道 mRNA 剪接
  • 批准号:
    8722085
  • 财政年份:
    2011
  • 资助金额:
    $ 38.87万
  • 项目类别:
Metabolic Regulation of Sodium Channels
钠通道的代谢调节
  • 批准号:
    8186151
  • 财政年份:
    2011
  • 资助金额:
    $ 38.87万
  • 项目类别:
Metabolic Regulation of Sodium Channels
钠通道的代谢调节
  • 批准号:
    8306025
  • 财政年份:
    2011
  • 资助金额:
    $ 38.87万
  • 项目类别:
Na+ channel mRNA splicing in heart failure
心力衰竭中的 Na 通道 mRNA 剪接
  • 批准号:
    8154997
  • 财政年份:
    2011
  • 资助金额:
    $ 38.87万
  • 项目类别:

相似海外基金

Modeling the spatiotemporal properties of crosstalk between RYR-mediated and IP3R-mediated calcium signaling in cardiac myocytes
模拟心肌细胞中 RYR 介导和 IP3R 介导的钙信号传导之间串扰的时空特性
  • 批准号:
    10701689
  • 财政年份:
    2022
  • 资助金额:
    $ 38.87万
  • 项目类别:
Understanding the mechanism why cardiac myocytes resist Myc-induced proliferation
了解心肌细胞抵抗 Myc 诱导的增殖的机制
  • 批准号:
    21K08854
  • 财政年份:
    2021
  • 资助金额:
    $ 38.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidating molecular mechanisms of magnesium regulation to protect cardiac myocytes against life-style related diseases
阐明镁调节保护心肌细胞免受生活方式相关疾病的分子机制
  • 批准号:
    20K11518
  • 财政年份:
    2020
  • 资助金额:
    $ 38.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Host-parasite lipid metabolism in Trypanosoma cruzi-infected cardiac myocytes
克氏锥虫感染心肌细胞中宿主寄生虫的脂质代谢
  • 批准号:
    10058037
  • 财政年份:
    2020
  • 资助金额:
    $ 38.87万
  • 项目类别:
Host-parasite lipid metabolism in Trypanosoma cruzi-infected cardiac myocytes
克氏锥虫感染心肌细胞中宿主寄生虫的脂质代谢
  • 批准号:
    10249356
  • 财政年份:
    2020
  • 资助金额:
    $ 38.87万
  • 项目类别:
A System to Optically Determine the Absolute Membrane Potential in Human iPSCD Cardiac Myocytes
光学测定人 iPSCD 心肌细胞绝对膜电位的系统
  • 批准号:
    10081467
  • 财政年份:
    2020
  • 资助金额:
    $ 38.87万
  • 项目类别:
cAMP Compartmentation in Cardiac Myocytes
心肌细胞中的 cAMP 区室
  • 批准号:
    10321915
  • 财政年份:
    2019
  • 资助金额:
    $ 38.87万
  • 项目类别:
cAMP Compartmentation in Cardiac Myocytes
心肌细胞中的 cAMP 区室
  • 批准号:
    10079026
  • 财政年份:
    2019
  • 资助金额:
    $ 38.87万
  • 项目类别:
Intramyocardial magnetic targeting of cardiac myocytes
心肌细胞的心肌内磁靶向
  • 批准号:
    405831333
  • 财政年份:
    2018
  • 资助金额:
    $ 38.87万
  • 项目类别:
    Research Grants
Translational research for the development of novel heart failure therapy that targets signaling pathway in cardiac myocytes
开发针对心肌细胞信号通路的新型心力衰竭疗法的转化研究
  • 批准号:
    18K08121
  • 财政年份:
    2018
  • 资助金额:
    $ 38.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了