Telehealth-Enabled Ultrasound-Bioimpedance Viscoelastographic Edema Monitoring

支持远程医疗的超声生物阻抗粘弹性成像水肿监测

基本信息

  • 批准号:
    8460425
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-04-01 至 2016-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): There is an enormous clinical problem in optimally managing the fluid status for a number of disease states, including chronic kidney disease (CKD), congestive heart failure (CHF), liver failure, and lymphedema. Currently, serial physical examinations by a skilled clinician provide the input for clinical decision making. However, serial examinations are a challenge, especially in rural, medically underserved communities and quantitative, operator independent hydration status assessments are lacking. Remote monitoring telehealth initiatives using weights and blood pressure measurements provide some information, but technology allowing rapid, robust, repeatable measurements of hydration status would be a major advance. In recent years, bioimpedance measurements have been shown to be useful in monitoring dialysis patients, where a dry weight determination is needed for optimal fluid status management. However, confounding effects from cellular ionic content hamper future evolution of this technique. We have developed approaches for strain-based bioimpedance measurements that will allow this field to advance. In addition, we have laid the groundwork to develop an alternative and complementary method for quantifying peripheral edema. The use of ultrasound strain imaging dynamically and quantitatively characterizes changes of a subsurface elastic medium under stress. Using these strain measurements, along with bioimpedance readings, we can completely characterize the visco- and poro-elastic parameters of a patient's edematous state. However, this technique is untested and needs to be developed and validated. Edematous tissue can be viewed as a poroelastic material containing both fluid and solid components. While bioimpedance measurements are responsive to volume fluid changes in tissue, ultrasound measurements primarily depend on the solid component of tissue. Combined, these modalities promise to offer a more complete analysis of edematous tissue while quantifying fluid hydration status with a precision yet seen clinically. Parallel to these concerns over hydration status, remote care in the form of telehealth and telemedicine is emerging as an important tool for numerous patient groups. Especially for rural, underserved communities, the ability to remotely communicate important reliable indicators of hydration status to their physicians can dramatically improve our ability to address health concerns. The overall goal of this proposal is to develop a clinically useful, robust, reproducible, quantitative tissue hydration measurement apparatus that will be low-cost, suitable for home or remote patient monitoring, with secure data handling. We will accomplish this by first developing appropriate hardware and software to independently test the ability of ultrasound and bioimpedance to detect changes in poroelastic structures under quasi-static and dynamic loading conditions. Algorithms and models based on the collected data will be developed and validated using PIV, load cell, and pressure transducer measurements. Parallel to this, a telehealth program will be developed including both the wireless capabilities needed as well as preliminary testing on alerts and warning systems that could be utilized once fluid hydration status readings are incorporated into remote monitoring regimes. Finally, a compact, convenient device will be developed ready for clinical testing combining both ultrasound and bioimpedance modalities to accurately and quantitatively determine tissue hydration of peripheral extremities and transmit the data securely over telehealth communication lines. Management of patients with diuretics or extracorporeal therapies requires proper assessment of volume status. This is important for a wide variety of clinical situations. Importantly, this proposal supports the Veterans Administration telehealth initiative and will improve the health of Veterans needing remote health monitoring.
描述(由申请人提供): 对于许多疾病状态,包括慢性肾病(CKD)、充血性心力衰竭(CHF)、肝功能衰竭和水肿,在最佳管理流体状态方面存在巨大的临床问题。目前,由熟练的临床医生进行的系列体格检查为临床决策提供了输入。然而,系列检查是一项挑战,特别是在农村、医疗服务不足的社区,缺乏定量的、操作者独立的水合状态评估。使用体重和血压测量的远程监测远程保健举措提供了一些信息,但允许快速,可靠,可重复测量水合状态的技术将是一个重大进步。 近年来,生物阻抗测量已被证明在监测透析患者中是有用的,其中需要确定干重以进行最佳液体状态管理。然而,细胞离子含量的混杂效应阻碍了这项技术的未来发展。我们已经开发了基于应变的生物阻抗测量方法,这将使这一领域的进步。 此外,我们已经为开发一种替代和补充方法来量化外周水肿奠定了基础。超声应变成像的使用动态地和定量地表征应力下地下弹性介质的变化。使用这些应变测量,沿着生物阻抗读数,我们可以完全表征患者水肿状态的粘弹性和多孔弹性参数。然而,这项技术未经测试,需要开发和验证。 水肿组织可被视为包含流体和固体组分的多孔弹性材料。虽然生物阻抗测量响应于组织中的体积流体变化,但是超声测量主要取决于组织的固体成分。结合起来,这些模式有望提供一个更完整的分析水肿组织,同时量化液体水合状态与精度尚未看到临床。 除了对水化状况的这些关切之外,远程保健和远程医疗形式的远程护理正在成为许多患者群体的一个重要工具。特别是对于农村,服务不足的社区,能够远程向医生传达重要的可靠的水合状态指标,可以大大提高我们解决健康问题的能力。 本提案的总体目标是开发一种临床上有用的、鲁棒的、可再现的定量组织水合测量装置,该装置将是低成本的,适合于家庭或远程患者监测,具有安全的数据处理。我们将通过首先开发适当的硬件和软件来独立测试超声和生物阻抗检测准静态和动态加载条件下多孔弹性结构变化的能力来实现这一目标。将使用PIV、测力传感器和压力传感器测量,开发并验证基于所收集数据的算法和模型。与此同时,将开发一个远程保健方案,包括所需的无线能力以及对警报和警告系统的初步测试,一旦将液体水合状态读数纳入远程监测制度,就可以利用这些系统。最后,将开发一种紧凑、方便的设备,用于结合超声和生物阻抗模式的临床测试,以准确、定量地确定外周四肢的组织水合作用,并通过远程保健通信线路安全地传输数据。 使用利尿剂或体外治疗的患者的管理需要适当评估容量状态。这对于各种临床情况都很重要。重要的是,该提案支持退伍军人管理局的远程医疗计划,并将改善需要远程健康监测的退伍军人的健康状况。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William F Weitzel其他文献

William F Weitzel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William F Weitzel', 18)}}的其他基金

Point of Care Elastographic Sonoangiography (eSA)
护理点弹性超声血管造影 (eSA)
  • 批准号:
    9768247
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Point of Care Elastographic Sonoangiography (eSA)
护理点弹性超声血管造影 (eSA)
  • 批准号:
    9393446
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Optimization of Dialysis Fistula Maturation via Vascular Ultrasound Elasticity an
通过血管超声弹性和优化透析瘘成熟
  • 批准号:
    8621267
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
Point-of-Care Carotid Ultrasound and Cardiovascular Risk Assessment Device
护理点颈动脉超声和心血管风险评估装置
  • 批准号:
    8455104
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
Optimization of Dialysis Fistula Maturation via Vascular Ultrasound Elasticity an
通过血管超声弹性和优化透析瘘成熟
  • 批准号:
    8732651
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
Telehealth-Enabled Ultrasound-Bioimpedance Viscoelastographic Edema Monitoring
支持远程医疗的超声生物阻抗粘弹性成像水肿监测
  • 批准号:
    8795695
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
Doppler Window for Low-Cost High-Performance Vascular Imaging
用于低成本高性能血管成像的多普勒窗口
  • 批准号:
    8253138
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
Telehealth-Enabled Ultrasound-Bioimpedance Viscoelastographic Edema Monitoring
支持远程医疗的超声生物阻抗粘弹性成像水肿监测
  • 批准号:
    8330416
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
Magnetic Drive Mechanism for VF Doppler Smart Sensor
VF多普勒智能传感器的磁力驱动机构
  • 批准号:
    8199261
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
VF Doppler Smart Sensor for Dialysis and Vascular Applications
适用于透析和血管应用的 VF 多普勒智能传感器
  • 批准号:
    7833128
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了