(PQA4) GPS exposure to environments & relations with biomarkers of cancer risk
(PQA4) GPS 暴露于环境中
基本信息
- 批准号:8722512
- 负责人:
- 金额:$ 71.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAgeBehaviorBiologicalBiological MarkersBuffersCaloriesCategoriesCensusesChildCodeColon CarcinomaDataDevicesDietEatingEnsureEnvironmentEnvironmental ExposureEquilibriumEthnic OriginExposure toFatty acid glycerol estersFoodGenderHealthHealth FoodHispanicsHome environmentImageIncomeInflammationInformation SystemsInsulinInsulin ResistanceInterleukin-6LifeLocationMachine LearningMalignant NeoplasmsMarketingMeasuresMethodsNeighborhoodsObesityOutcomeParticipantPathway interactionsPatient Self-ReportPersonsPharmaceutical PreparationsPhysical FunctionPhysical activityPositioning AttributeRecreationRecruitment ActivityResearchResourcesRestaurantsRiskRisk FactorsSamplingSeasonsSelf PerceptionSocial BehaviorSocial EnvironmentSocial InteractionSpeedStatistical ModelsSurveysSystemTechniquesTextTimeTransportationVariantWalkingWeightbasecancer riskdemographicsdensityfast foodfood environmentgood dietinflammatory markerland uselearned behaviormalignant breast neoplasmnovelpublic health relevanceresidencesedentarysugartv watching
项目摘要
DESCRIPTION (provided by applicant): Physical inactivity, an unhealthy diet, and obesity are related to breast and colon cancer directly and through insulin and inflammation pathways. Greater access to healthy environments in residential neighborhoods is associated with higher physical activity (PA), a healthier diet, lower BMI, and in one study lower insulin resistance. Despite some significant findings, the effect sizes in built environment research have been small likely because of a mismatch between the environment assessed (home neighborhoods only) and location where the behaviors occur. Temporal variation in behaviors and locations within and across days has also been ignored. We propose to advance methods of cancer risk exposure assessment by measuring both neighborhood access and total environment exposure to healthy environments by dynamically integrating Global Positioning System (GPS) data with Geographical Information System (GIS) data. We hypothesize that dynamic GPS based measures of environmental exposure will be more strongly related to behavior and insulin and inflammation biomarkers than static addressed based GIS measures of access. We will study a large sample of adults (N=700), 40-75 years old, who have lived at their residence at least one year. We will recruit participants from census blocks specially selected to vary by income, walkability, and food environments to ensure environmental variability not achieved in a random sample. We will ensure balanced recruitment by census block type (walkability & food environments) across ethnicity, gender, age, and season. Half the sample will be Hispanic to explore potential interaction effects by ethnicity. Participants will complete surveys about their PA, sedentary behavior, environmental perceptions, self-selection, cancer risk, and demographics. PA and sedentary behavior will also be assessed by accelerometry and Machine Learning techniques will be employed to objectively identify specific behaviors likely related to the built environment e.g. walking, biking, riding in a car, screen time etc. Participants will complete the ASA 24 to assess diet, total calories and fat calories. A subsample (N=50) will wear a SenseCam to assess social context, validate GIS built environment measures, and validate the Machine Learned categories. Dynamic GIS measures of exposure will be created from 7 day person worn GPS data matched to GIS indicators of supportive PA and food environments (e.g. parks, walkable streets, fresh produce markets etc.) weighted by time, speed, transportation mode and features of the environment e.g. parcel size. Static residential GIS buffers of access to neighborhood resources will be created within a 1km street network buffer around a participant's home. Using multilevel statistical models adjusting for clustering, we will investigate whether GPS based Dynamic GIS measures of exposure to healthy food and PA supportive environments are more strongly associated with breast and colon cancer risk factors - including behaviors (PA, sedentary behavior, & diet), BMI, and biomarkers of insulin resistance and inflammation (e.g. CRP, IL-6, HOMA-IR) than Static GIS measures of access to neighborhood resources.
描述(由申请人提供):缺乏运动、不健康饮食和肥胖与乳腺癌和结肠癌直接相关,并通过胰岛素和炎症途径相关。在住宅区更容易获得健康的环境与更高的体力活动(PA),更健康的饮食,更低的BMI相关,在一项研究中,更低的胰岛素抵抗。尽管有一些重要的发现,但建筑环境研究的效应量很小,可能是因为评估的环境(仅限于家庭社区)和行为发生的位置之间的不匹配。一天之内和一天之间的行为和位置的时间变化也被忽略了。我们建议通过动态整合全球定位系统(GPS)数据与地理信息系统(GIS)数据来测量邻里访问和健康环境的总环境暴露,从而推进癌症风险暴露评估方法。我们假设,动态GPS为基础的措施,环境暴露的行为和胰岛素和炎症的生物标志物比静态解决基于GIS的访问措施将更密切相关。我们将研究一个大样本的成年人(N=700),40-75岁,谁住在他们的住所至少一年。我们将从特别选择的人口普查区招募参与者,这些人口普查区因收入、步行能力和食物环境而异,以确保在随机样本中不会出现环境变异。我们将确保在种族、性别、年龄和季节之间按人口普查街区类型(步行能力和食品环境)进行平衡招聘。一半的样本将是西班牙裔,以探索种族的潜在相互作用效应。参与者将完成关于他们的PA,久坐行为,环境感知,自我选择,癌症风险和人口统计的调查。PA和久坐行为也将通过加速度计进行评估,机器学习技术将用于客观地识别可能与建筑环境相关的特定行为,例如步行、骑自行车、乘车、屏幕时间等。参与者将完成阿萨24,以评估饮食、总卡路里和脂肪卡路里。子样本(N=50)将佩戴SenseCam评估社会背景,验证GIS构建环境措施,并验证机器学习类别。将根据与支持性PA和食品环境(例如公园、步行街道、新鲜农产品市场等)的GIS指标相匹配的7天佩戴GPS数据创建暴露的动态GIS测量值。按时间、速度、运输方式和环境特征(例如包裹大小)加权。静态住宅GIS缓冲区访问邻里资源将创建一个1公里的街道网络缓冲区周围的参与者的家。使用多层次统计模型调整聚类,我们将调查是否基于GPS的动态GIS措施暴露于健康食品和PA支持的环境与乳腺癌和结肠癌的风险因素更密切相关-包括行为(PA,久坐行为和饮食),BMI以及胰岛素抵抗和炎症的生物标志物(例如CRP、IL-6、HOMA-IR)比静态GIS测量对邻近资源的访问。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacqueline Kerr其他文献
Jacqueline Kerr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacqueline Kerr', 18)}}的其他基金
Sedentary Behaviour Interrupted: Acute, medium and long-term effects on biomarkers of healthy aging, physical function and mortality
久坐行为中断:对健康老龄化、身体功能和死亡率的生物标志物的急性、中期和长期影响
- 批准号:
9278020 - 财政年份:2017
- 资助金额:
$ 71.56万 - 项目类别:
Peer Empowerment Program for Physical Activity in Low Income & Minority Seniors
低收入群体体育活动同伴赋权计划
- 批准号:
8966041 - 财政年份:2014
- 资助金额:
$ 71.56万 - 项目类别:
Peer Empowerment Program for Physical Activity in Low Income & Minority Seniors
低收入群体体育活动同伴赋权计划
- 批准号:
8797221 - 财政年份:2014
- 资助金额:
$ 71.56万 - 项目类别:
(PQA4) GPS exposure to environments & relations with biomarkers of cancer risk
(PQA4) GPS 暴露于环境中
- 批准号:
8590146 - 财政年份:2013
- 资助金额:
$ 71.56万 - 项目类别:
Validating Machine-Learned Classifiers of Sedentary Behavior and Physical Activit
验证久坐行为和身体活动的机器学习分类器
- 批准号:
8371173 - 财政年份:2012
- 资助金额:
$ 71.56万 - 项目类别:
Development and Validation of Novel Prospective GPS/GIS Based Exposure Measures
基于 GPS/GIS 的新型前瞻性暴露测量方法的开发和验证
- 批准号:
8542802 - 财政年份:2012
- 资助金额:
$ 71.56万 - 项目类别:
Validating Machine-Learned Classifiers of Sedentary Behavior and Physical Activit
验证久坐行为和体力活动的机器学习分类器
- 批准号:
8840546 - 财政年份:2012
- 资助金额:
$ 71.56万 - 项目类别:
Development and Validation of Novel Prospective GPS/GIS Based Exposure Measures
基于 GPS/GIS 的新型前瞻性暴露测量方法的开发和验证
- 批准号:
8354613 - 财政年份:2012
- 资助金额:
$ 71.56万 - 项目类别:
Validating Machine-Learned Classifiers of Sedentary Behavior and Physical Activit
验证久坐行为和身体活动的机器学习分类器
- 批准号:
8658051 - 财政年份:2012
- 资助金额:
$ 71.56万 - 项目类别:
Validating Machine-Learned Classifiers of Sedentary Behavior and Physical Activit
验证久坐行为和身体活动的机器学习分类器
- 批准号:
8509635 - 财政年份:2012
- 资助金额:
$ 71.56万 - 项目类别:
相似海外基金
Developing a Young Adult-Mediated Intervention to Increase Colorectal Cancer Screening among Rural Screening Age-Eligible Adults
制定年轻人介导的干预措施,以增加农村符合筛查年龄的成年人的结直肠癌筛查
- 批准号:
10653464 - 财政年份:2023
- 资助金额:
$ 71.56万 - 项目类别:
Doctoral Dissertation Research: Estimating adult age-at-death from the pelvis
博士论文研究:从骨盆估算成人死亡年龄
- 批准号:
2316108 - 财政年份:2023
- 资助金额:
$ 71.56万 - 项目类别:
Standard Grant
Determining age dependent factors driving COVID-19 disease severity using experimental human paediatric and adult models of SARS-CoV-2 infection
使用 SARS-CoV-2 感染的实验性人类儿童和成人模型确定导致 COVID-19 疾病严重程度的年龄依赖因素
- 批准号:
BB/V006738/1 - 财政年份:2020
- 资助金额:
$ 71.56万 - 项目类别:
Research Grant
Transplantation of Adult, Tissue-Specific RPE Stem Cells for Non-exudative Age-related macular degeneration (AMD)
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 (AMD)
- 批准号:
10294664 - 财政年份:2020
- 资助金额:
$ 71.56万 - 项目类别:
Sex differences in the effect of age on episodic memory-related brain function across the adult lifespan
年龄对成人一生中情景记忆相关脑功能影响的性别差异
- 批准号:
422882 - 财政年份:2019
- 资助金额:
$ 71.56万 - 项目类别:
Operating Grants
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
- 批准号:
430871 - 财政年份:2019
- 资助金额:
$ 71.56万 - 项目类别:
Studentship Programs
Transplantation of Adult, Tissue-Specific RPE Stem Cells as Therapy for Non-exudative Age-Related Macular Degeneration AMD
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 AMD
- 批准号:
9811094 - 财政年份:2019
- 资助金额:
$ 71.56万 - 项目类别:
Study of pathogenic mechanism of age-dependent chromosome translocation in adult acute lymphoblastic leukemia
成人急性淋巴细胞白血病年龄依赖性染色体易位发病机制研究
- 批准号:
18K16103 - 财政年份:2018
- 资助金额:
$ 71.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Doctoral Dissertation Research: Literacy Effects on Language Acquisition and Sentence Processing in Adult L1 and School-Age Heritage Speakers of Spanish
博士论文研究:识字对西班牙语成人母语和学龄传统使用者语言习得和句子处理的影响
- 批准号:
1823881 - 财政年份:2018
- 资助金额:
$ 71.56万 - 项目类别:
Standard Grant
Adult Age-differences in Auditory Selective Attention: The Interplay of Norepinephrine and Rhythmic Neural Activity
成人听觉选择性注意的年龄差异:去甲肾上腺素与节律神经活动的相互作用
- 批准号:
369385245 - 财政年份:2017
- 资助金额:
$ 71.56万 - 项目类别:
Research Grants














{{item.name}}会员




