Validating Machine-Learned Classifiers of Sedentary Behavior and Physical Activit
验证久坐行为和体力活动的机器学习分类器
基本信息
- 批准号:8840546
- 负责人:
- 金额:$ 53.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-12 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAccountingAdultAgeAgreementAlgorithmsAutomobile DrivingBehaviorBehavior assessmentBehavioralBicyclingCancer ControlCardiovascular DiseasesCardiovascular systemChildClassificationCodeComplementComputational TechniqueDataData AnalysesData FilesData SetDevicesDiscriminationElderlyEnvironmentExerciseFunctional disorderFundingGeneric DrugsGenesGeographic Information SystemsGoldGraphHealthHealth PromotionHealth behaviorHip region structureHousekeepingImageInformation SystemsInterventionIntervention StudiesLaboratory StudyLifeLightLight ExerciseLinkLocationLocomotionMachine LearningMalignant NeoplasmsMarshalMeasurementMeasuresMetabolicMetabolic MarkerMethodsModelingMovementNational Health and Nutrition Examination SurveyObesityOnline SystemsParticipantPatient Self-ReportPatternPersonsPhysical activityPopulationPopulation GroupPositioning AttributePrevalencePrevention strategyProceduresRecruitment ActivityResearchResistanceRiskSamplingScienceSensitivity and SpecificitySignal TransductionStreamSubgroupSurfaceSystemTestingTimeTrainingUnited States National Institutes of HealthValidationWristbasecancer preventioncomputerized data processingepidemiologic dataimprovedintervention effectnovelsedentarysensortemporal measurementvector
项目摘要
DESCRIPTION (provided by applicant): Sedentary behavior (SB) is a health risk, independent of moderate-to-vigorous physical activity (MVPA). Epidemiologic data reveal consistent associations between SB and numerous cancers, cardiovascular disease, as well as multiple markers of metabolic dysfunction. Reducing SB is recommended as a viable new cancer prevention strategy. Hip mounted accelerometry is a field-based criterion measure of PA but is inadequate for measuring SB. Misclassification most often occurs when movements are performed with limited trunk displacement, under load or on an incline, on a vibrating surface (e.g., in a car), or when they are too small to be distinguished from non-wear time. This is unacceptable because we may then mischaracterize the prevalence of both SB and PA. Measurement error obscures true relationships between behavior and health, and the effects of interventions may go undetected. [Our study will improve upon laboratory studies that do little to test SB in natural environments such as driving or watching TV. Lab-based machine learning algorithms for SB are aided by the artificial start and end points. Algorithms based upon research in free living settings will be more generalizable and applicable to intervention research]. In this study we will refine and validate new machine-learned classification algorithms for a continuum of behaviors from SB to MVPA using accelerometer, Global Positioning System (GPS), and Geographic Information System (GIS) data. This study will focus on behaviors that are most frequently misclassified: moderate intensity activities that are coded as light, light activities that are coded as sedentary, and sedentary activities that are coded as light or non wear time. [We will improve upon current self-report and accelerometer estimates by 30-50%.] We will focus on four primary behavioral classes: lying, sitting, standing, and ambulatory locomotion. A total of 210 participants (ages 6-10 yrs, n = 70; 16-55 yrs, n=70; 65-85 yrs, n= 70) will be recruited over a 2-yr period and will wear 3 ActiGraph accelerometers (two hip, one wrist); a GPS device, and a SenseCam (an automatic image capture device) for two weekdays and 1 weekend day. [A subsample will repeat the procedures for a further 3 days]. For a 6 hr period on each of these days, participants will also be directly observed by trained coders who will record free living behaviors using a novel portable behavioral assessment system developed for the iPad. Direct observation data will provide 'ground-truths' of behavior for an annotated data file recorded at one-second intervals. For free-living behaviors not directly observed, SenseCam images will be used. Machine learning Kernel methods will be employed. Sensitivity, specificity, accuracy and other ROC graph methods will be used to compare classifiers derived from: (a) single axis vs. multi axis accelerometer data; (b) movement 'counts' vs. raw acceleration data; and (c) hip vs. wrist mounted accelerometers. Analyses will determine the improvement in sensitivity and specificity when GPS and GIS data are added. We will evaluate the need for population specific classifiers and quantify measurement error in cut-points that are currently employed.
描述(由申请人提供):久坐行为(SB)是一种健康风险,独立于中度到剧烈的体育锻炼(MVPA)。流行病学数据揭示了SB与众多癌症,心血管疾病以及代谢功能障碍的多个标记之间的一致关联。建议减少SB作为可行的新癌症预防策略。髋关节安装的加速度计是一种基于野外的PA的标准度量,但不足以测量SB。当在振动表面(例如,在汽车中)或太小而无法与非磨损时间区分开时,在有限的躯干位移,在负载下或倾斜的情况下进行有限的躯干位移进行运动时,通常会发生错误分类。这是不可接受的,因为然后我们可能会误解SB和PA的流行率。测量误差掩盖了行为与健康之间的真实关系,干预措施的影响可能未被发现。 [我们的研究将改进实验室研究,这些研究对在自然环境(例如开车或看电视)中几乎无济于事。 SB的基于实验室的机器学习算法得到了人工起点和终点的帮助。基于自由生活环境的研究的算法将更具普遍性,并且适用于干预研究。在这项研究中,我们将使用加速度计,全球定位系统(GPS)和地理信息系统(GIS)数据来完善并验证新的机器学习分类算法,以实现从SB到MVPA的连续行为。这项研究将重点关注最常见的错误分类的行为:中等强度的活动,这些活动被编码为轻型活动,被编码为久坐的光活动以及编码为轻度或非磨损时间的久坐活动。 [我们将将当前的自我报告和加速度计估计值提高30-50%。]我们将重点介绍四个主要的行为类别:撒谎,坐着,站立和卧床运动。共有210名参与者(6-10岁,n = 70; 16-55年,n = 70; 65-85岁,n = 70)将在2年内招募,并将佩戴3个行动式加速度计(两只臀部,一只手腕); GPS设备和Sensecam(自动图像捕获设备)在两个工作日和1个周末。 [子样本将再重复3天的过程]。在这几天的每个日子里,参与者也将被训练有素的编码人员直接观察到,他们将使用为iPad开发的新型便携式行为评估系统记录自由生活行为。直接观察数据将为以一秒的间隔记录的带注释的数据文件提供“地面真相”。对于未直接观察到的自由生活行为,将使用Sensecam图像。将采用机器学习内核方法。灵敏度,特异性,准确性和其他ROC图方法将用于比较以下分类器:(a)单轴与多轴加速度计数据; (b)运动“计数”与原始加速度数据; (c)髋关节与腕部安装的加速度计。当添加GPS和GIS数据时,分析将确定灵敏度和特异性的提高。我们将评估对人群特定分类器的需求,并量化当前使用的切点的测量误差。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-sensor physical activity recognition in free-living.
自由生活中的多传感器身体活动识别。
- DOI:10.1145/2638728.2641673
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Ellis K;Godbole S;Kerr J;Lanckriet G
- 通讯作者:Lanckriet G
A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
- DOI:10.1088/0967-3334/35/11/2191
- 发表时间:2014-11
- 期刊:
- 影响因子:3.2
- 作者:Ellis K;Kerr J;Godbole S;Lanckriet G;Wing D;Marshall S
- 通讯作者:Marshall S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacqueline Kerr其他文献
Jacqueline Kerr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacqueline Kerr', 18)}}的其他基金
Sedentary Behaviour Interrupted: Acute, medium and long-term effects on biomarkers of healthy aging, physical function and mortality
久坐行为中断:对健康老龄化、身体功能和死亡率的生物标志物的急性、中期和长期影响
- 批准号:
9278020 - 财政年份:2017
- 资助金额:
$ 53.61万 - 项目类别:
Peer Empowerment Program for Physical Activity in Low Income & Minority Seniors
低收入群体体育活动同伴赋权计划
- 批准号:
8966041 - 财政年份:2014
- 资助金额:
$ 53.61万 - 项目类别:
Peer Empowerment Program for Physical Activity in Low Income & Minority Seniors
低收入群体体育活动同伴赋权计划
- 批准号:
8797221 - 财政年份:2014
- 资助金额:
$ 53.61万 - 项目类别:
(PQA4) GPS exposure to environments & relations with biomarkers of cancer risk
(PQA4) GPS 暴露于环境中
- 批准号:
8722512 - 财政年份:2013
- 资助金额:
$ 53.61万 - 项目类别:
(PQA4) GPS exposure to environments & relations with biomarkers of cancer risk
(PQA4) GPS 暴露于环境中
- 批准号:
8590146 - 财政年份:2013
- 资助金额:
$ 53.61万 - 项目类别:
Validating Machine-Learned Classifiers of Sedentary Behavior and Physical Activit
验证久坐行为和身体活动的机器学习分类器
- 批准号:
8371173 - 财政年份:2012
- 资助金额:
$ 53.61万 - 项目类别:
Development and Validation of Novel Prospective GPS/GIS Based Exposure Measures
基于 GPS/GIS 的新型前瞻性暴露测量方法的开发和验证
- 批准号:
8542802 - 财政年份:2012
- 资助金额:
$ 53.61万 - 项目类别:
Development and Validation of Novel Prospective GPS/GIS Based Exposure Measures
基于 GPS/GIS 的新型前瞻性暴露测量方法的开发和验证
- 批准号:
8354613 - 财政年份:2012
- 资助金额:
$ 53.61万 - 项目类别:
Validating Machine-Learned Classifiers of Sedentary Behavior and Physical Activit
验证久坐行为和身体活动的机器学习分类器
- 批准号:
8658051 - 财政年份:2012
- 资助金额:
$ 53.61万 - 项目类别:
Validating Machine-Learned Classifiers of Sedentary Behavior and Physical Activit
验证久坐行为和身体活动的机器学习分类器
- 批准号:
8509635 - 财政年份:2012
- 资助金额:
$ 53.61万 - 项目类别:
相似国自然基金
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
会计师事务所数字化能力构建:动机、经济后果及作用机制
- 批准号:72372028
- 批准年份:2023
- 资助金额:42.00 万元
- 项目类别:面上项目
会计师事务所薪酬激励机制:理论框架、激励效应检验与优化重构
- 批准号:72362001
- 批准年份:2023
- 资助金额:28.00 万元
- 项目类别:地区科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332002
- 批准年份:2023
- 资助金额:165.00 万元
- 项目类别:重点项目
相似海外基金
The Illinois Precision Medicine Consortium (IPMC) All of Us Research Program Site
伊利诺伊州精准医学联盟 (IPMC) All of Us 研究计划网站
- 批准号:
10872859 - 财政年份:2023
- 资助金额:
$ 53.61万 - 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
- 批准号:
10711136 - 财政年份:2023
- 资助金额:
$ 53.61万 - 项目类别:
Validating Sensor-based Approaches for Monitoring Eating Behavior and Energy Intake by Accounting for Real-World Factors that Impact Accuracy and Acceptability
通过考虑影响准确性和可接受性的现实因素来验证基于传感器的饮食行为和能量摄入监测方法
- 批准号:
10636986 - 财政年份:2023
- 资助金额:
$ 53.61万 - 项目类别:
Wisconsin Registry for Alzheimer's Prevention
威斯康星州阿尔茨海默病预防登记处
- 批准号:
10655978 - 财政年份:2023
- 资助金额:
$ 53.61万 - 项目类别:
Myonuclear dynamics during skeletal muscle aging
骨骼肌衰老过程中的肌核动力学
- 批准号:
10714194 - 财政年份:2023
- 资助金额:
$ 53.61万 - 项目类别: