Advanced Technology to Study Visual Function on a Cellular Scale
在细胞尺度上研究视觉功能的先进技术
基本信息
- 批准号:8698161
- 负责人:
- 金额:$ 126.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlabamaAnimal ModelAreaBasic ScienceBiomedical EngineeringBlood VesselsBrainCaliforniaCellsCessation of lifeClinicClinicalClinical ResearchCollaborationsColorColor VisionsComputer softwareConeCustomDensitometryDiseaseDisease ProgressionElectrophysiology (science)EngineeringEnvironmentEyeEye MovementsEye diseasesFunctional disorderHumanImageImageryKnowledgeLasersLateralLifeLightLocationMapsMeasurementMeasuresMediatingMethodsMicroscopicMonitorMonkeysMotionMutationNeurosciencesOphthalmoscopesOphthalmoscopyOptical InstrumentOpticsPathologyPathway interactionsPatientsPerceptionPerformancePhotoreceptorsPrimatesPropertyPsychophysicsResearchResolutionResource SharingRetinaRetinalRetinal ConeRetinal Ganglion CellsSan FranciscoScanningScienceSeriesSiteSourceSpeedStagingStimulusStructureSystemTechnologyTestingTimeTranslatingTranslationsTreatment EfficacyUniversitiesValidationVisionVision TestsVisualVisual system structureWorkadaptive opticsadvanced systembasecell typecellular pathologyclinical applicationdesignefficacy testingfovea centralisganglion cellimprovedin vivoinnovationinstrumentinterestknowledge translationpatient populationpublic health relevancereceptive fieldresearch studyresponseretinal rodsspatial vision
项目摘要
DESCRIPTION (provided by applicant): This project is to develop and support three state-of-the-art optical instruments that provide microscopic access to the living retina, and use them to obtain a clearer understanding of how the human visual system works. They will be used to answer questions about the most important and the most challenging region in the retina to study, the fovea. The instruments are built upon two key technical strengths - adaptive optics scanning laser ophthalmoscope (AOSLO) systems and accurate, high-speed eye-motion tracking. Adaptive optics (AO) technology corrects the imperfections in the eye and can be used to generate microscopic views of the living retina. AO also enables the delivery of ultra-sharp images to the retina. Eye tracking is used to measure and compensate for ever-present eye motion. Together, these allow for accurate visualization, tracking and delivery of light to retinal
features as small as single cone photoreceptors, enabling measurements of properties of spatial and color vision on an unprecedented scale. Although the three systems will be identical and will be used to test vision on a cellular scale, the scope of study for each system will be very different. The AOSLO at the University of Alabama, Birmingham will be used to test vision in primates, the AOSLO at the University of California, Berkeley will be used to perform advanced vision testing on healthy human eyes, and the AOSLO at the University of California, San Francisco will be used to study patients with eye disease. The key advantage of having the BRP manage three identical systems is that it will facilitate hardware innovations plus rapid translation of knowledge and innovative testing from animal models to the clinic. Briefly, the specific aims are: Aim 1: Develop and deploy state-of-the-art AOSLO systems at each site. Demonstrate performance by performing objective densitometry measures in monkeys and humans to map the three classes of cone photoreceptor that subserve color vision. Aim 2: Develop improved eye tracking and stimulus delivery capabilities in each system. Confirm performance by using subjective psychophysical tests to map the same three classes of cone photoreceptor as in Aim 1. Aim 3: Perform a series of experiments in monkeys and humans to map the connections and interactions within and between the retina and the brain and to study how we see the world as stable even though our eyes are in constant motion. Aim 4: Apply advanced vision testing methods in the clinic to discover mechanisms for cone death in different diseases, to monitor changes in cone function and structure during disease progression and to test the efficacy of treatments that aim to stop or slow disease progression. Aim 5: Make eye tracking and targeted stimulus delivery capabilities accessible to a wider audience by providing software, hardware designs and a forum for anyone interesting in building similar advanced systems.
描述(由申请人提供):该项目旨在开发和支持三种提供微观访问生活视网膜的最先进的光学仪器,并利用它们对人类视觉系统的工作方式有了更清晰的了解。他们将用于回答有关视网膜研究中最重要,最具挑战性地区的问题,即中央凹。这些仪器建立在两个关键技术优势的基础上 - 自适应光学扫描激光眼镜(AOSLO)系统和准确的高速眼动物跟踪。自适应光学器件(AO)技术纠正了眼睛中的缺陷,可用于生成生活视网膜的微观视图。 AO还可以将Ultra Sharp图像传递到视网膜。眼睛跟踪用于测量和补偿不断出现的眼动。这些共同使这些光可以准确可视化,跟踪和传递到视网膜
与单锥光受体一样小的特征,可以在前所未有的刻度上测量空间和色觉的性能。尽管这三个系统将是相同的,并且将用于在细胞尺度上测试视觉,但每个系统的研究范围都会大不相同。伯明翰阿拉巴马大学的AOSLO将用于测试灵长类动物的视觉,加利福尼亚大学的Aoslo将用于对健康的人眼进行高级视力测试,加利福尼亚大学的AOSLO将使用旧金山分校,用于研究患有眼病的患者。拥有BRP管理三个相同系统的主要优点是,它将促进硬件创新,以及从动物模型到诊所的知识和创新测试的快速翻译。简而言之,具体目的是:目标1:在每个站点上开发和部署最先进的AOSLO系统。通过在猴子和人类中执行客观的光密度测量测量来绘制三类锥形光感受体来证明性能。 AIM 2:在每个系统中开发改进的眼动追踪和刺激输送功能。通过使用主观的心理物理测试来确认性能,以绘制与AIM 1相同的三类锥形光感受器的映射。AIM3:在猴子和人类中进行一系列实验,以绘制视网膜和大脑内外的连接和相互作用,并研究我们如何将世界视为稳定的眼睛,即使我们的眼睛在恒定的运动中也是稳定的。 AIM 4:在诊所中应用先进的视力测试方法,以发现不同疾病中锥形死亡的机制,以监测疾病进展过程中锥体功能和结构的变化,并测试旨在停止或减慢疾病进展的治疗的功效。 AIM 5:通过提供软件,硬件设计和论坛,为在构建类似的高级系统中有趣的人提供一个更广泛的受众访问的刺激和有针对性的刺激交付功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Austin Roorda其他文献
Austin Roorda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Austin Roorda', 18)}}的其他基金
Interferometric optophysiology of the human retina.
人类视网膜的干涉光生理学。
- 批准号:
9316641 - 财政年份:2015
- 资助金额:
$ 126.45万 - 项目类别:
Interferometric Optophysiology of the Human Retina
人类视网膜的干涉光生理学
- 批准号:
10004318 - 财政年份:2015
- 资助金额:
$ 126.45万 - 项目类别:
Interferometric optophysiology of the human retina.
人类视网膜的干涉光生理学。
- 批准号:
8912810 - 财政年份:2015
- 资助金额:
$ 126.45万 - 项目类别:
Single cone contributions to color perception using adaptive optics
使用自适应光学器件对颜色感知的单锥体贡献
- 批准号:
8316277 - 财政年份:2011
- 资助金额:
$ 126.45万 - 项目类别:
相似海外基金
How Serine-129 Phosphorylation Status Affects the Spreading of α-Synuclein Pathology in Vivo: a Study in Knock-in Animals
Serine-129 磷酸化状态如何影响体内 α-突触核蛋白病理学的传播:敲入动物研究
- 批准号:
10736995 - 财政年份:2023
- 资助金额:
$ 126.45万 - 项目类别:
Development and Production of Standardized Reference Diets for Zebrafish Research
斑马鱼研究标准化参考饲料的开发和生产
- 批准号:
10823702 - 财政年份:2023
- 资助金额:
$ 126.45万 - 项目类别:
Early Life Stress-induced Reprogramming of Ambulatory Blood Pressure and Vascular Function in Adolescence
生命早期压力引起的青春期动态血压和血管功能的重编程
- 批准号:
10555127 - 财政年份:2023
- 资助金额:
$ 126.45万 - 项目类别:
Time-Restricted Eating and Cancer: Clinical Outcomes, Mechanisms, and Moderators
限时饮食与癌症:临床结果、机制和调节因素
- 批准号:
10179205 - 财政年份:2021
- 资助金额:
$ 126.45万 - 项目类别:
Time-Restricted Eating and Cancer: Clinical Outcomes, Mechanisms, and Moderators
限时饮食与癌症:临床结果、机制和调节因素
- 批准号:
10643869 - 财政年份:2021
- 资助金额:
$ 126.45万 - 项目类别: