Interferometric optophysiology of the human retina.
人类视网膜的干涉光生理学。
基本信息
- 批准号:9316641
- 负责人:
- 金额:$ 61.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAddressAnimal ModelBiological Neural NetworksBlindnessCell membraneCellsClinicalCollaborationsConeCouplingDiagnosisDiseaseElectrodesElectrophysiology (science)ElementsEyeEye MovementsFluorescenceFunctional disorderGenerationsGeometryGlaucomaGoalsHumanImageIn VitroIndividualInterferometryInvestigationIonsLateralLengthLightMapsMeasurableMeasurementMeasuresMembraneMethodsMicroscopyMonitorMosaicismNatural regenerationNeuronsOphthalmologyOptical Coherence TomographyOpticsPatientsPatternPerformancePhasePhotoreceptorsPhysicsPhysiologicalPhysiologyPositioning AttributePreparationPrimatesPsychophysicsRefractive IndicesResearchResolutionRetinaRetinalRetinal DiseasesRetinal Ganglion CellsRetinitis PigmentosaScanningSystemTechnologyTestingTissuesUniversitiesVisible RadiationVisionVisual system structureWorkadaptive opticsadaptive optics scanning laser ophthalmoscopybaseelectrical measurementin vivoin vivo imaginginnovationnanoscaleneural patterningneurotransmissionnew technologynon-invasive imagingnovel strategiesoptical imagingphase changepublic health relevancereceptive fieldrelating to nervous systemretinal neurontargeted deliverytechnology developmenttooltransmission processvisual processingvisual stimulus
项目摘要
DESCRIPTION (provided by applicant): Our goal is to develop a new technology for non-invasive optical monitoring of activity of individual retinal neurons and their light-driven inputs at cellular resolution, in the living human retina. If successful, this technology will provide an entirely new and objective approach to understand and monitor treatment of retinal disease, thereby transforming scientific studies of the eye and vision. This project directly addresses the priorities outlined in the RFA-EY-14-001, the first RFA within the NEI Audacious Goal Initiative. The proposed work relies on combining and validating two new approaches. First, interferometry (including phase-resolved OCT; Park Lab at UC Riverside) can, in principle, be used to measure nanometer-scale distortions in the membranes of cells that occur during membrane depolarization and ion influx. With depth resolution, these measurements will enable us to measure neural activity non-invasively, throughout the layers of the retina, at cellular resolution. Second, adaptive optics scanning laser ophthalmoscopy (Roorda Lab at UC Berkeley) and image-based eye tracking can be used to position stimulating and measurement beams on the retina with cellular precision in the living eye, by overcoming optical aberrations and eye jitter. This technology will allow us to activate individual photoreceptors and groups of photoreceptors with visible light while imaging the resulting electrical activity of individual downstream cells, in vivo. To advance and combine these approaches requires a stepwise aggregation of technology. In a unique collaboration, we will build on simpler wide-field interferometric measurements of electrical activity in isolated retina (Palanker Lab at Stanford University), combined with large-scale multi-electrode physiological measurements in primate retina (Chichilnisky Lab at Stanford University) to validate and tune the optical measurements. Ultimately, the innovation at each step forms a powerful tool, independently or with a combination of other approaches, and finds applicability to optical imaging, retinal physiology, psychophysics and clinical ophthalmology. The specific aims are: Aim 1. Wide-field interferometry for measuring patterns of neural activity in primate retina Depolarization during neural signaling produces nanometer-scale deformations in cells that are detectable with interferometry. The simplest approach is wide-field interferometric microscopy with transmission geometry in isolated retina. We will measure depth-resolved optical phase changes produced by neural activity in primate retina, and use them for physiological characterizations of many retinal
ganglion cells (RGCs) and other retinal neurons simultaneously. Aim 2. Phase-resolved OCT for reflectance measurements of patterns of retinal activity. The next step toward human application is phase-resolved OCT; essentially, low-coherence interferometry and a well-established tool for in vivo imaging. We will record optical path length changes associated with neural activity in reflection geometry using point-scanning, near-IR (1060 nm), phase-resolved OCT on isolated primate retina. Aim 3. Adaptive optics, eye tracking and phase-resolved OCT for measuring human retinal function. Deployment in humans requires compensating for optical aberrations in the eye as well as eye movements. We will develop a system that uses AOSLO to image the retina for eye tracking, targeted delivery of stimulation light, and positioning of the OCT probe. We will test this system in humans and demonstrate its potential application in clinical settings.
描述(由申请人提供):我们的目标是开发一种新技术,用于对活人视网膜中单个视网膜神经元的活动及其以细胞分辨率的光驱动输入进行非侵入性光学监测。如果成功,这项技术将为理解和监测视网膜疾病的治疗提供一种全新且客观的方法,从而改变眼睛和视力的科学研究。该项目直接解决 RFA-EY-14-001 中概述的优先事项,这是 NEI Audacious Goal Initiative 中的第一个 RFA。 拟议的工作依赖于结合和验证两种新方法。首先,干涉测量法(包括相位分辨 OCT;加州大学河滨分校帕克实验室)原则上可用于测量细胞膜在膜去极化和离子流入过程中发生的纳米级变形。凭借深度分辨率,这些测量将使我们能够以细胞分辨率非侵入性地测量视网膜各层的神经活动。其次,自适应光学扫描激光检眼镜(加州大学伯克利分校的 Roorda 实验室)和基于图像的眼动追踪可用于通过克服光学像差和眼睛抖动,在活体眼睛中以细胞精度将刺激和测量光束定位在视网膜上。这项技术将使我们能够用可见光激活单个光感受器和光感受器组,同时对体内单个下游细胞产生的电活动进行成像。 要推进和结合这些方法需要逐步聚合技术。在一次独特的合作中,我们将建立在离体视网膜(斯坦福大学 Palanker 实验室)电活动的更简单的宽场干涉测量基础上,结合灵长类动物视网膜(斯坦福大学 Chichilnisky 实验室)的大规模多电极生理测量,以验证和调整光学测量。 最终,每一步的创新独立地或与其他方法结合形成一个强大的工具,并适用于光学成像、视网膜生理学、心理物理学和临床眼科。具体目标是: 目标 1. 用于测量灵长类动物视网膜神经活动模式的广域干涉测量法 神经信号传导过程中的去极化会在细胞中产生纳米级的变形,这些变形可通过干涉测量法检测到。最简单的方法是在孤立的视网膜中使用透射几何结构的宽视场干涉显微镜。我们将测量灵长类动物视网膜神经活动产生的深度分辨光学相位变化,并将其用于许多视网膜的生理特征
神经节细胞(RGC)和其他视网膜神经元同时。目标 2. 用于视网膜活动模式反射率测量的相位分辨 OCT。人类应用的下一步是相位分辨 OCT;本质上,低相干干涉测量是一种行之有效的体内成像工具。我们将使用点扫描、近红外 (1060 nm)、相位分辨 OCT 在离体灵长类动物视网膜上记录反射几何中与神经活动相关的光路长度变化。目标 3. 用于测量人类视网膜功能的自适应光学、眼球追踪和相位分辨 OCT。在人类中的部署需要补偿眼睛的光学像差以及眼球运动。我们将开发一个系统,使用 AOSLO 对视网膜进行成像,以进行眼球追踪、有针对性地传输刺激光以及定位 OCT 探头。我们将在人体中测试该系统,并展示其在临床环境中的潜在应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Austin Roorda其他文献
Austin Roorda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Austin Roorda', 18)}}的其他基金
Interferometric Optophysiology of the Human Retina
人类视网膜的干涉光生理学
- 批准号:
10004318 - 财政年份:2015
- 资助金额:
$ 61.87万 - 项目类别:
Interferometric optophysiology of the human retina.
人类视网膜的干涉光生理学。
- 批准号:
8912810 - 财政年份:2015
- 资助金额:
$ 61.87万 - 项目类别:
Advanced Technology to Study Visual Function on a Cellular Scale
在细胞尺度上研究视觉功能的先进技术
- 批准号:
8698161 - 财政年份:2014
- 资助金额:
$ 61.87万 - 项目类别:
Single cone contributions to color perception using adaptive optics
使用自适应光学器件对颜色感知的单锥体贡献
- 批准号:
8316277 - 财政年份:2011
- 资助金额:
$ 61.87万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 61.87万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 61.87万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 61.87万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 61.87万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 61.87万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 61.87万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 61.87万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 61.87万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 61.87万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 61.87万 - 项目类别:
Research Grant














{{item.name}}会员




