Interferometric optophysiology of the human retina.

人类视网膜的干涉光生理学。

基本信息

  • 批准号:
    8912810
  • 负责人:
  • 金额:
    $ 70.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-05-01 至 2020-04-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Our goal is to develop a new technology for non-invasive optical monitoring of activity of individual retinal neurons and their light-driven inputs at cellular resolution, in the living human retina. If successful, this technology will provide an entirely new and objective approach to understand and monitor treatment of retinal disease, thereby transforming scientific studies of the eye and vision. This project directly addresses the priorities outlined in the RFA-EY-14-001, the first RFA within the NEI Audacious Goal Initiative. The proposed work relies on combining and validating two new approaches. First, interferometry (including phase-resolved OCT; Park Lab at UC Riverside) can, in principle, be used to measure nanometer-scale distortions in the membranes of cells that occur during membrane depolarization and ion influx. With depth resolution, these measurements will enable us to measure neural activity non-invasively, throughout the layers of the retina, at cellular resolution. Second, adaptive optics scanning laser ophthalmoscopy (Roorda Lab at UC Berkeley) and image-based eye tracking can be used to position stimulating and measurement beams on the retina with cellular precision in the living eye, by overcoming optical aberrations and eye jitter. This technology will allow us to activate individual photoreceptors and groups of photoreceptors with visible light while imaging the resulting electrical activity of individual downstream cells, in vivo. To advance and combine these approaches requires a stepwise aggregation of technology. In a unique collaboration, we will build on simpler wide-field interferometric measurements of electrical activity in isolated retina (Palanker Lab at Stanford University), combined with large-scale multi-electrode physiological measurements in primate retina (Chichilnisky Lab at Stanford University) to validate and tune the optical measurements. Ultimately, the innovation at each step forms a powerful tool, independently or with a combination of other approaches, and finds applicability to optical imaging, retinal physiology, psychophysics and clinical ophthalmology. The specific aims are: Aim 1. Wide-field interferometry for measuring patterns of neural activity in primate retina Depolarization during neural signaling produces nanometer-scale deformations in cells that are detectable with interferometry. The simplest approach is wide-field interferometric microscopy with transmission geometry in isolated retina. We will measure depth-resolved optical phase changes produced by neural activity in primate retina, and use them for physiological characterizations of many retinal ganglion cells (RGCs) and other retinal neurons simultaneously. Aim 2. Phase-resolved OCT for reflectance measurements of patterns of retinal activity. The next step toward human application is phase-resolved OCT; essentially, low-coherence interferometry and a well-established tool for in vivo imaging. We will record optical path length changes associated with neural activity in reflection geometry using point-scanning, near-IR (1060 nm), phase-resolved OCT on isolated primate retina. Aim 3. Adaptive optics, eye tracking and phase-resolved OCT for measuring human retinal function. Deployment in humans requires compensating for optical aberrations in the eye as well as eye movements. We will develop a system that uses AOSLO to image the retina for eye tracking, targeted delivery of stimulation light, and positioning of the OCT probe. We will test this system in humans and demonstrate its potential application in clinical settings.
 描述(由申请人提供):我们的目标是开发一种新技术,用于在活体人类视网膜中以细胞分辨率对单个视网膜神经元的活动及其光驱动输入进行非侵入性光学监测。如果成功,这项技术将提供一种全新的客观方法来了解和监测视网膜疾病的治疗,从而改变眼睛和视力的科学研究。该项目直接解决了RFA-EY-14-001中概述的优先事项,这是NEI大胆目标倡议中的第一个RFA。 拟议的工作依赖于结合和验证两种新方法。首先,干涉测量法(包括相位分辨OCT;加州大学滨江的Park Lab)原则上可用于测量细胞膜在膜去极化和离子流入期间发生的纳米级畸变。通过深度分辨率,这些测量将使我们能够以细胞分辨率非侵入性地测量整个视网膜层的神经活动。第二,自适应光学扫描激光检眼镜(Roorda Lab at UC Berkeley)和基于图像的眼睛跟踪可用于通过克服光学像差和眼睛抖动,在活体眼睛中以细胞精度将刺激和测量光束定位在视网膜上。这项技术将使我们能够用可见光激活单个光感受器和光感受器组,同时在体内成像单个下游细胞的电活动。 为了推进和联合收割机这些方法需要逐步聚合技术。在一次独特的合作中,我们将建立在离体视网膜电活动的更简单的宽视场干涉测量(斯坦福大学的帕兰克实验室)的基础上,结合灵长类动物视网膜的大规模多电极生理测量(斯坦福大学的奇奇尔尼斯基实验室)来验证和调整光学测量。 最终,每一步的创新都形成了一个强大的工具,独立地或与其他方法相结合,并适用于光学成像,视网膜生理学,心理物理学和临床眼科学。具体目标是:目标1。用于测量灵长类动物视网膜神经活动模式的宽视场干涉法神经信号传导期间的去极化在细胞中产生纳米级的变形,这些变形可以用干涉法检测到。最简单的方法是在离体视网膜中使用透射几何的宽视场干涉显微镜。我们将测量灵长类视网膜神经活动产生的深度分辨光学相位变化,并将其用于许多视网膜的生理特征, 神经节细胞(RGCs)和其他视网膜神经元同时。目标2.用于视网膜活动模式反射测量的相位分辨OCT。人类应用的下一步是相位分辨OCT;本质上,低相干干涉测量和用于体内成像的成熟工具。我们将使用点扫描,近红外(1060 nm),相位分辨OCT在离体灵长类动物视网膜上记录与反射几何学中神经活动相关的光程长度变化。目标3.自适应光学、眼动跟踪和相位分辨OCT用于测量人类视网膜功能。在人类中的部署需要补偿眼睛中的光学像差以及眼睛运动。我们将开发一种系统,使用AOSLO对视网膜进行成像,用于眼动跟踪、刺激光的靶向输送和OCT探头的定位。我们将在人体中测试该系统,并展示其在临床环境中的潜在应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Austin Roorda其他文献

Austin Roorda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Austin Roorda', 18)}}的其他基金

Interferometric optophysiology of the human retina.
人类视网膜的干涉光生理学。
  • 批准号:
    9316641
  • 财政年份:
    2015
  • 资助金额:
    $ 70.17万
  • 项目类别:
Interferometric Optophysiology of the Human Retina
人类视网膜的干涉光生理学
  • 批准号:
    10004318
  • 财政年份:
    2015
  • 资助金额:
    $ 70.17万
  • 项目类别:
Advanced Technology to Study Visual Function on a Cellular Scale
在细胞尺度上研究视觉功能的先进技术
  • 批准号:
    8698161
  • 财政年份:
    2014
  • 资助金额:
    $ 70.17万
  • 项目类别:
Single cone contributions to color perception using adaptive optics
使用自适应光学器件对颜色感知的单锥体贡献
  • 批准号:
    8316277
  • 财政年份:
    2011
  • 资助金额:
    $ 70.17万
  • 项目类别:
ADAPTIVE OPTICS SCANNING LASER OPHTHALMOSCOPE
自适应光学扫描激光检眼镜
  • 批准号:
    6233626
  • 财政年份:
    2001
  • 资助金额:
    $ 70.17万
  • 项目类别:
ADAPTIVE OPTICS SCANNING LASER OPHTHALMOSCOPE
自适应光学扫描激光检眼镜
  • 批准号:
    6635721
  • 财政年份:
    2001
  • 资助金额:
    $ 70.17万
  • 项目类别:
ADAPTIVE OPTICS SCANNING LASER OPHTHALMOSCOPE
自适应光学扫描激光检眼镜
  • 批准号:
    6518707
  • 财政年份:
    2001
  • 资助金额:
    $ 70.17万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 70.17万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 70.17万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 70.17万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 70.17万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 70.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 70.17万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 70.17万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 70.17万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 70.17万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 70.17万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了