Center for Adaptive Neurotechnologies
自适应神经技术中心
基本信息
- 批准号:8742704
- 负责人:
- 金额:$ 164.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-10 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AchievementAlgorithmsBase of the BrainBrainClinicalClinical EngineeringComputer softwareDevelopmentDiseaseEducational CurriculumEducational workshopElectroencephalographyEngineeringFoundationsFunctional disorderJournalsMapsMethodsModelingMotorNervous System PhysiologyNervous system structureNeuraxisOperant ConditioningPathway interactionsProcessProtocols documentationRehabilitation therapyResearch InfrastructureResolutionScientistSignal TransductionSpinalStrokeSubstance abuse problemSurfaceSystemTimeTrainingTranslationsTrauma recoveryWorkaddictionbrain computer interfaceclinical applicationcravingdisabilityemotion regulationexperienceimprovedinsightmeetingsmotor controlnervous system disorderneuromuscularneurotechnologynew technologynovelnovel therapeuticspublic health relevanceweb site
项目摘要
DESCRIPTION (provided by applicant): Wadsworth scientists and engineers are building a unique technological infrastructure that supports real time interactions with the central nervous system (CNS). They are using it to produce important new scientific insights and novel clinical methods, and they are beginning to disseminate these achievements to others. The proposed Center for Adaptive Neurotechnologies will continue and expand this effort, strengthen its focus on clinical translation, and accelerate dissemination of the new technologies. It has five specific aims. Aim 1 will develop and validate new operant conditioning protocols that can modify specific spinal and corticospinal CNS pathways to induce and guide beneficial (i.e., rehabilitative) plasticity in the CNS. These protocols will also be incorporated into a compact and robust unit to enable widespread use of this new therapeutic method in people with motor disabilities. Aim 2 will develop and validate electroencephalography(EEG)-based brain-computer interface (BCI) systems that can improve important CNS functions, such as motor control in people with severe neuromuscular disabilities (e.g., stroke) and emotion regulation in people with addiction disorders (thereby reducing craving and substance abuse). Aim 3 will develop and validate methods that use electrocorticographic (ECoG) signals from the cortical surface to localize and characterize brain processes with temporal and spatial resolution beyond that now possible. This work will develop novel algorithms for modeling, co-registration, representation, and reduction of ECoG signals; and will incorporate them into real-time software for detecting, mapping, and interacting with the brain processes underlying specific functions and dysfunctions. Aim 4 will create a novel interdisciplinary training curriculum that provides a theoretical foundation in adaptive neurotechnologies and practical experience in applying them to important scientific and clinical applications. This curriculum will be incorporated into training courses and workshops. Aim 5 will develop and support dissemination channels for adaptive neurotechnologies, including: the highly interactive Center website; review articles in scientific,
engineering, and clinical journals; and presentations and workshops at scientific and clinical meetings.
描述(申请人提供):沃兹沃斯的科学家和工程师正在建设一种独特的技术基础设施,支持与中枢神经系统(CNS)的实时交互。他们正在利用它来产生重要的新科学见解和新的临床方法,并开始将这些成果传播给其他人。拟议的自适应神经技术中心将继续并扩大这一努力,加强对临床翻译的关注,并加快新技术的传播。它有五个具体目标。目的1将开发和验证新的操作性条件反射方案,这些方案可以改变特定的脊髓和皮质脊髓中枢神经系统通路,以诱导和引导中枢神经系统中有益的(即康复的)可塑性。这些方案还将被纳入一个紧凑而坚固的单元,使这种新的治疗方法能够在运动障碍者中广泛使用。Aim 2将开发和验证基于脑电(EEG)的脑机接口(BCI)系统,该系统可以改善重要的中枢神经功能,如患有严重神经肌肉障碍(如中风)的人的运动控制和有成瘾障碍的人的情绪调节(从而减少渴望和药物滥用)。AIM 3将开发和验证使用来自皮质表面的皮层脑电(ECoG)信号来定位和表征大脑过程的方法,其时间和空间分辨率超过了现在可能实现的水平。这项工作将开发用于ECoG信号的建模、联合配准、表示和还原的新算法;并将它们整合到实时软件中,用于检测、映射和与潜在的特定功能和功能障碍的大脑过程交互。AIM 4将创建一个新的跨学科培训课程,提供自适应神经技术的理论基础和将其应用于重要科学和临床应用的实践经验。这一课程将纳入培训课程和讲习班。AIM 5将开发和支持自适应神经技术的传播渠道,包括:高度互动的中心网站;科学、
工程学和临床杂志;以及在科学和临床会议上的演讲和研讨会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Rickel Wolpaw其他文献
Jonathan Rickel Wolpaw的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Rickel Wolpaw', 18)}}的其他基金
Corticospinal control of spinal reflex plasticity
皮质脊髓对脊髓反射可塑性的控制
- 批准号:
10670047 - 财政年份:2018
- 资助金额:
$ 164.84万 - 项目类别:
Dynamics and Causal Functions of Large-Scale Cortical and Subcortical Networks
大规模皮层和皮层下网络的动力学和因果函数
- 批准号:
9789700 - 财政年份:2018
- 资助金额:
$ 164.84万 - 项目类别:
Corticospinal control of spinal reflex plasticity
皮质脊髓对脊髓反射可塑性的控制
- 批准号:
10041767 - 财政年份:2018
- 资助金额:
$ 164.84万 - 项目类别:
Corticospinal control of spinal reflex plasticity
皮质脊髓对脊髓反射可塑性的控制
- 批准号:
10295134 - 财政年份:2018
- 资助金额:
$ 164.84万 - 项目类别:
Technology Research and Development Project 1 (Guiding Beneficial Plasticity)
技术研发项目1(引导有益可塑性)
- 批准号:
10456336 - 财政年份:2014
- 资助金额:
$ 164.84万 - 项目类别:
Operant Conditioning of Spinal Reflexes to Improve Function after Nerve Injury
脊髓反射的操作性调节以改善神经损伤后的功能
- 批准号:
8729102 - 财政年份:2014
- 资助金额:
$ 164.84万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 164.84万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 164.84万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 164.84万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 164.84万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 164.84万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 164.84万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 164.84万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 164.84万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 164.84万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 164.84万 - 项目类别:
Continuing Grant














{{item.name}}会员




