Developing Transgenic Sindbis Virus as a Tool to Trace Neural Circuitry
开发转基因辛德比斯病毒作为追踪神经回路的工具
基本信息
- 批准号:8720079
- 负责人:
- 金额:$ 23.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnatomyAnimal ModelAnimalsAntiviral AgentsAntiviral ResponseArbovirusesBiological ModelsBrainCell Culture TechniquesCell physiologyCellsClinicalCultured CellsDefense MechanismsDependencyDevelopmentDrosophila genusEncephalitisEngineeringFunctional disorderGene ExpressionGenesGeneticGenetic EngineeringGenetic ModelsGenetic TranscriptionGenomeGenomicsGlycoproteinsGoalsHost DefenseHost Defense MechanismInfectionInjection of therapeutic agentInsectaIntegration Host FactorsLibrariesLuciferasesMeasuresMembrane ProteinsMethodsModelingModificationMolecularMolecular GeneticsMusMutationNervous system structureNeuronsNeurotropismOutcomePathway interactionsPatternProcessProductionRNARNA InterferenceRNA VirusesRabiesRabies virusRepliconReproducibilitySindbis VirusSolutionsSynapsesSystemTestingTherapeuticTherapeutic AgentsTimeTissuesTracerTransgenesTransgenic OrganismsUnited StatesVaccinesVariantViralViral EncephalitisViral ProteinsVirionVirusVirus DiseasesVirus ReplicationWorkYeastsbasecell typedesigneffective therapyflyin vivointerestmortalityneural circuitneurotropicnew therapeutic targetnovelparticlepathogenprogramspublic health relevancereconstructionrelating to nervous systemresearch studyself assemblysensortool
项目摘要
DESCRIPTION (provided by applicant):
Reconstructing the anatomy of the nervous system by defining the pattern of synaptic connections between identified neurons represents a crucial step toward developing a deep understanding of neural computation. Tools based on genetically modified viruses have demonstrated utility in this regard in the mouse, but the mechanisms by which these viruses cross synapses are unknown. More broadly, our understanding of how viral infections spread within the brain to cause encephalitis is limited, and there are presently few therapeutic options available to treat such infections. This proposal uses a new method to target production of virus particles to specific neurons, and uses genetic approaches to both understand the regulatory mechanisms that control virus spread, and to rationally design a new circuit tracing tool. Genetically engineered derivatives of Rabies virus and Pseudo-rabies virus that exploit the intrinsic ability of these viruses to spread through the brain have provided valuable tools for dissecting neural circuitry. However, the mechanisms by which these viruses cross synaptic connections is unknown, and these experiments require the physical injection of infectious virus particles, creating experimental variability and reducing throughput. Moreover, these tools have not been shown to work in the fruit fly, an important model system for unraveling microcircuit function. We therefore propose a different approach, one based on another virus, Sindbis, in which virus particles are genetically programmed to assemble specifically in subsets of neurons. Using this approach, we propose to use genetic approaches to first define the cellular mechanisms that regulate spread of virus infections in the brain. Then, using genetic engineering of the surface proteins of the virus, we will specifically target viral release to synapses. Finally, by combining manipulations of the host defense repertoire with our genetically modified virus genomes, we will perform proof of principle experiments that reconstruct specific neural circuits. Arboviruses, viruses that infect both insect and mammalian hosts, represent some of the most common causes of viral encephalitis in the United States. No targeted therapeutic agents, or vaccines, presently exist for the treatment of these infections, and poor clinical outcomes are frequent. Many of these viral agents are closely related to Sindbis, and understanding the cellular defense mechanisms that regulate its spread in the brain will inform our understanding of these pathogens. By identifying host proteins that the virus depends on for its replication and assembly, our studies will identify new therapeutic targets. In addition, the development of a new tool for defining the wiring diagram of neural circuits will enable further studies of brain function and dysfunction.
描述(由申请人提供):
通过定义已识别神经元之间的突触连接模式来重建神经系统的解剖结构,是深入理解神经计算的关键一步。基于转基因病毒的工具已经在小鼠中证明了这方面的实用性,但这些病毒穿过突触的机制尚不清楚。更广泛地说,我们对病毒感染如何在大脑内传播导致脑炎的理解是有限的,目前几乎没有治疗这种感染的治疗方法。该提案使用一种新的方法将病毒颗粒的生产靶向特定的神经元,并使用遗传方法来理解控制病毒传播的调节机制,并合理设计一种新的电路跟踪工具。 狂犬病病毒和伪狂犬病病毒的基因工程衍生物利用了这些病毒在大脑中传播的内在能力,为解剖神经回路提供了宝贵的工具。然而,这些病毒穿过突触连接的机制尚不清楚,这些实验需要物理注射感染性病毒颗粒,从而产生实验变异性并降低通量。此外,这些工具还没有被证明在果蝇中起作用,果蝇是解开微电路功能的重要模型系统。因此,我们提出了一种不同的方法,一种基于另一种病毒辛德比斯,其中病毒颗粒被遗传编程为在神经元子集中特异性组装。使用这种方法,我们建议使用遗传方法首先定义调节病毒感染在大脑中传播的细胞机制。然后,利用病毒表面蛋白的基因工程,我们将特异性地将病毒释放到突触。最后,通过将宿主防御系统的操作与我们的转基因病毒基因组相结合,我们将进行重建特定神经回路的原理实验的证明。 虫媒病毒,感染昆虫和哺乳动物宿主的病毒,代表了美国病毒性脑炎的一些最常见原因。目前没有靶向治疗剂或疫苗可用于治疗这些感染,并且临床结果常常不佳。这些病毒因子中有许多与辛德毕斯病毒密切相关,了解调节其在大脑中传播的细胞防御机制将有助于我们了解这些病原体。通过鉴定病毒复制和组装所依赖的宿主蛋白,我们的研究将确定新的治疗靶点。此外,开发一种定义神经回路接线图的新工具将使进一步研究大脑功能和功能障碍成为可能。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Robert Clandinin其他文献
Thomas Robert Clandinin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Robert Clandinin', 18)}}的其他基金
How do neurons coordinate alternative energy sources to meet the demands of computation?
神经元如何协调替代能源以满足计算需求?
- 批准号:
10606195 - 财政年份:2022
- 资助金额:
$ 23.31万 - 项目类别:
Population Neural Activity Mediating Sensory Perception Across Modalities
群体神经活动介导跨模态的感官知觉
- 批准号:
10310712 - 财政年份:2021
- 资助金额:
$ 23.31万 - 项目类别:
Population Neural Activity Mediating Sensory Perception Across Modalities
群体神经活动介导跨模态的感官知觉
- 批准号:
10242189 - 财政年份:2018
- 资助金额:
$ 23.31万 - 项目类别:
Population Neural Activity Mediating Sensory Perception Across Modalities
群体神经活动介导跨模态的感官知觉
- 批准号:
9789712 - 财政年份:2018
- 资助金额:
$ 23.31万 - 项目类别:
A Brain Circuit Program for Understanding the Sensorimotor Basis of Behavior
用于理解行为的感觉运动基础的脑回路程序
- 批准号:
10202757 - 财政年份:2017
- 资助金额:
$ 23.31万 - 项目类别:
Revealing circuit control of neuronal excitation with next-generation voltage indicators
使用下一代电压指示器揭示神经元兴奋的电路控制
- 批准号:
9380741 - 财政年份:2017
- 资助金额:
$ 23.31万 - 项目类别:
A Brain Circuit Program for Understanding the Sensorimotor Basis of Behavior
用于理解行为的感觉运动基础的脑回路程序
- 批准号:
9444301 - 财政年份:2017
- 资助金额:
$ 23.31万 - 项目类别:
Project 3: Neural Basis of Motion Guidance Loops
项目 3:运动引导环的神经基础
- 批准号:
10202763 - 财政年份:2017
- 资助金额:
$ 23.31万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 23.31万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 23.31万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 23.31万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 23.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 23.31万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 23.31万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 23.31万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 23.31万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 23.31万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 23.31万 - 项目类别:
Studentship