Population Neural Activity Mediating Sensory Perception Across Modalities
群体神经活动介导跨模态的感官知觉
基本信息
- 批准号:10310712
- 负责人:
- 金额:$ 9.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:Administrative SupplementAlgorithmsAnimalsAuditoryAwardBRAIN initiativeBehaviorBiological ModelsBrainBrain imagingComplexComputer ModelsCuesDiseaseDoctor of PhilosophyDrosophila genusEnvironmentEsthesiaFacial ExpressionGoalsHumanImpairmentIndividualLeadLeftLinkMediatingMentorsMethodsModalityMonitorParkinson DiseasePathway interactionsPerceptionPeripheralPopulationPopulation DynamicsPrincipal InvestigatorPropertySensorySensory ReceptorsSignal TransductionSpeechStatistical ModelsStimulusStreamSynapsesSystemTaste PerceptionTechnologyTestingUnited States National Institutes of HealthVisionVisualautism spectrum disorderbasebehavioral responsecell typedesignimprovedinsightmultimodalitymultisensoryneural circuitparent grantrelating to nervous systemresponsesensory input
项目摘要
The parent grant was awarded as a BRAIN Initiative award via RFA-NS-18-009.
This is an application for NIH BRAIN Initiative Administrative Supplement to enhance diversity.
Mentor and Principal Investigator: Mala Murthy, PhD Candidate: Edna Normand, MD/PhD Candidate
Project Summary (from Parent Grant):
Natural sensory inputs are typically complex, and often combine multiple modalities. Human speech, for
example, combines auditory signals with visual cues, such as facial expressions, that inform the interpretation
of the spoken words. As individual sensory pathways only provide a partial representation of the sensory
information available, selecting the context-appropriate behavioral response to a multimodal stimulus often
requires integrating information across modalities. How do neural circuits perform this fundamental
computation? Our current understanding of sensory processing is predominantly built upon studies that have
focused on single sensory modalities, working into the brain beginning from sensory receptors. As a result, we
have a deep understanding of peripheral circuit computations in many different experimental contexts.
However, working inward, cell-type by cell-type, has left our understanding of the circuits and computational
principles that link sensation to action incomplete. Moreover, experimental strategies that focus exclusively on
single sensory modalities cannot, by design, lead to insights into how the unified percepts that guide behavior
can be assembled from information emerging in separate sensory processing streams. Here we leverage
whole-brain imaging and advanced computational approaches to establish the fruit fly Drosophila as a model
system for uncovering fundamental principles underpinning multisensory integration. This proposal has three
goals. First, we will optimize whole-brain imaging in this experimental system, and use this technology to
comprehensively characterize population dynamics underpinning the sensations of vision, mechanosensation
and taste. Second, we will systematically quantify circuit interactions between these sensory modalities and
across-animal variability, testing computational models of statistical inference, and identifying the algorithmic
bases of multimodal integration. Third, we will link population dynamics to the response properties of single
cell-types, providing a powerful path to characterizing circuit and synaptic mechanisms. Taken together, by
developing and applying improved methods for large-scale monitoring of neural activity, combined with
computational modeling and quantitative analysis, this project will greatly expand our understanding of sensory
processing mechanisms across the brain.
家长拨款通过RFA-NS-18-009作为大脑倡议奖授予。
这是NIH大脑倡议行政副刊的一份申请,以增强多样性。
导师和首席研究员:Mala Murthy,博士生:Edna Normand,医学博士/博士生
项目总结(来自Parent Grant):
自然的感觉输入通常是复杂的,并且通常结合了多种形式。人类的语言,例如
例如,将听觉信号与视觉提示(如面部表情)相结合,以通知解释
所说的话。因为单个感官通路仅提供感官的部分表征
可获得的信息,选择对多模式刺激的上下文适当的行为反应通常
需要跨医疗机构集成信息。神经电路是如何实现这一基本功能的
计算?我们目前对感觉加工的理解主要建立在以下研究的基础上
专注于单一感觉模式,从感觉感受器开始工作到大脑。因此,我们
对许多不同实验环境中的外围电路计算有深入的了解。
然而,向内工作,一个细胞类型一个细胞类型,离开了我们对电路和计算的理解
将感觉与行动联系起来的原则是不完整的。此外,专门专注于
从设计上讲,单一的感觉模式不能导致对指导行为的统一感知的洞察
可以从独立的感觉处理流中出现的信息中组合而成。在这里,我们利用
建立果蝇模型的全脑成像和先进计算方法
揭示支撑多感官整合的基本原理的系统。这项建议有三个方面
目标。首先,我们将在这个实验系统中优化全脑成像,并使用这项技术来
全面描述支持视觉、机械感觉的人口动态
和品味。第二,我们将系统地量化这些感觉模式和
跨动物变异性,测试统计推断的计算模型,并确定算法
多式联运一体化的基础。第三,我们将把种群动态与单个的响应特性联系起来
细胞类型,为表征电路和突触机制提供了一条强大的途径。合在一起,由
开发和应用改进的方法,用于大规模监测神经活动,结合
计算建模和定量分析,这个项目将极大地扩展我们对感官的理解
整个大脑的处理机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Robert Clandinin其他文献
Thomas Robert Clandinin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Robert Clandinin', 18)}}的其他基金
How do neurons coordinate alternative energy sources to meet the demands of computation?
神经元如何协调替代能源以满足计算需求?
- 批准号:
10606195 - 财政年份:2022
- 资助金额:
$ 9.49万 - 项目类别:
Population Neural Activity Mediating Sensory Perception Across Modalities
群体神经活动介导跨模态的感官知觉
- 批准号:
10242189 - 财政年份:2018
- 资助金额:
$ 9.49万 - 项目类别:
Population Neural Activity Mediating Sensory Perception Across Modalities
群体神经活动介导跨模态的感官知觉
- 批准号:
9789712 - 财政年份:2018
- 资助金额:
$ 9.49万 - 项目类别:
A Brain Circuit Program for Understanding the Sensorimotor Basis of Behavior
用于理解行为的感觉运动基础的脑回路程序
- 批准号:
10202757 - 财政年份:2017
- 资助金额:
$ 9.49万 - 项目类别:
Revealing circuit control of neuronal excitation with next-generation voltage indicators
使用下一代电压指示器揭示神经元兴奋的电路控制
- 批准号:
9380741 - 财政年份:2017
- 资助金额:
$ 9.49万 - 项目类别:
A Brain Circuit Program for Understanding the Sensorimotor Basis of Behavior
用于理解行为的感觉运动基础的脑回路程序
- 批准号:
9444301 - 财政年份:2017
- 资助金额:
$ 9.49万 - 项目类别:
Project 3: Neural Basis of Motion Guidance Loops
项目 3:运动引导环的神经基础
- 批准号:
10202763 - 财政年份:2017
- 资助金额:
$ 9.49万 - 项目类别:
A new strategy for cell-type specific gene disruption in flies and mice
果蝇和小鼠细胞类型特异性基因破坏的新策略
- 批准号:
9297370 - 财政年份:2015
- 资助金额:
$ 9.49万 - 项目类别:
相似海外基金
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2019
- 资助金额:
$ 9.49万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2018
- 资助金额:
$ 9.49万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2017
- 资助金额:
$ 9.49万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2016
- 资助金额:
$ 9.49万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2015
- 资助金额:
$ 9.49万 - 项目类别:
Collaborative Research and Development Grants
Algorithms to generate designs of potency experiments that use far fewer animals
生成使用更少动物的效力实验设计的算法
- 批准号:
8810865 - 财政年份:2015
- 资助金额:
$ 9.49万 - 项目类别:
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2015
- 资助金额:
$ 9.49万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2013
- 资助金额:
$ 9.49万 - 项目类别:
Collaborative Research and Development Grants
Development of population-level algorithms for modelling genomic variation and its impact on cellular function in animals and plants
开发群体水平算法来建模基因组变异及其对动植物细胞功能的影响
- 批准号:
FT110100972 - 财政年份:2012
- 资助金额:
$ 9.49万 - 项目类别:
ARC Future Fellowships
Advanced computational algorithms for brain imaging studies of freely moving animals
用于自由活动动物脑成像研究的先进计算算法
- 批准号:
DP120103813 - 财政年份:2012
- 资助金额:
$ 9.49万 - 项目类别:
Discovery Projects