Population Neural Activity Mediating Sensory Perception Across Modalities

群体神经活动介导跨模态的感官知觉

基本信息

  • 批准号:
    9789712
  • 负责人:
  • 金额:
    $ 100.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-30 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary: Natural sensory inputs are typically complex, and often combine multiple modalities. Human speech, for example, combines auditory signals with visual cues, such as facial expressions, that inform the interpretation of the spoken words. As individual sensory pathways only provide a partial representation of the sensory information available, selecting the context-appropriate behavioral response to a multimodal stimulus often requires integrating information across modalities. How do neural circuits perform this fundamental computation? Our current understanding of sensory processing is predominantly built upon studies that have focused on single sensory modalities, working into the brain beginning from sensory receptors. As a result, we have a deep understanding of peripheral circuit computations in many different experimental contexts. However, working inward, cell-type by cell-type, has left our understanding of the circuits and computational principles that link sensation to action incomplete. Moreover, experimental strategies that focus exclusively on single sensory modalities cannot, by design, lead to insights into how the unified percepts that guide behavior can be assembled from information emerging in separate sensory processing streams. Here we leverage whole-brain imaging and advanced computational approaches to establish the fruit fly Drosophila as a model system for uncovering fundamental principles underpinning multisensory integration. This proposal has three goals. First, we will optimize whole-brain imaging in this experimental system, and use this technology to comprehensively characterize population dynamics underpinning the sensations of vision, mechanosensation and taste. Second, we will systematically quantify circuit interactions between these sensory modalities and across-animal variability, testing computational models of statistical inference, and identifying the algorithmic bases of multimodal integration. Third, we will link population dynamics to the response properties of single cell-types, providing a powerful path to characterizing circuit and synaptic mechanisms. Taken together, by developing and applying improved methods for large-scale monitoring of neural activity, combined with computational modeling and quantitative analysis, this project will greatly expand our understanding of sensory processing mechanisms across the brain.
项目总结: 自然的感觉输入通常是复杂的,并且通常结合了多种形式。人类的语言,例如 例如,将听觉信号与视觉提示(如面部表情)相结合,以通知解释 所说的话。因为单个感官通路仅提供感官的部分表征 可获得的信息,选择对多模式刺激的上下文适当的行为反应通常 需要跨医疗机构集成信息。神经电路是如何实现这一基本功能的 计算? 我们目前对感觉加工的理解主要建立在以下研究的基础上 单一感觉模式,从感觉感受器开始进入大脑。因此,我们有一个 对许多不同实验环境中的外围电路计算有深入的了解。然而, 向内工作,一个细胞类型一个细胞类型,留下了我们对电路和计算原理的理解 这种感觉与行动之间的联系并不完整。此外,只关注单身人士的试验性策略 通过设计,感官形式不能引导人们深入了解指导行为的统一感知是如何 从独立的感觉处理流中出现的信息组合而成。在这里,我们利用全脑 建立果蝇模型系统的成像和先进计算方法 揭示支撑多感官整合的基本原理。 这项提议有三个目标。首先,我们将在这个实验系统中优化全脑成像,并使用 这项技术全面描述了支撑视觉的人口动态, 机械感官和味觉。第二,我们将系统地量化这些电路之间的相互作用 感觉模式和跨动物变异性,测试统计推断的计算模型,以及 确定多通道集成的算法基础。第三,我们将把人口动态与 单细胞类型的响应特性,为表征电路和突触提供了一条强有力的途径 机制。总而言之,通过开发和应用改进的方法来大规模监测 神经活动,结合计算建模和定量分析,这个项目将大大扩展 我们对整个大脑的感觉处理机制的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Robert Clandinin其他文献

Thomas Robert Clandinin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Robert Clandinin', 18)}}的其他基金

Dissecting neuronal lipid metabolism
剖析神经元脂质代谢
  • 批准号:
    10605689
  • 财政年份:
    2022
  • 资助金额:
    $ 100.48万
  • 项目类别:
How do neurons coordinate alternative energy sources to meet the demands of computation?
神经元如何协调替代能源以满足计算需求?
  • 批准号:
    10606195
  • 财政年份:
    2022
  • 资助金额:
    $ 100.48万
  • 项目类别:
Population Neural Activity Mediating Sensory Perception Across Modalities
群体神经活动介导跨模态的感官知觉
  • 批准号:
    10310712
  • 财政年份:
    2021
  • 资助金额:
    $ 100.48万
  • 项目类别:
Population Neural Activity Mediating Sensory Perception Across Modalities
群体神经活动介导跨模态的感官知觉
  • 批准号:
    10242189
  • 财政年份:
    2018
  • 资助金额:
    $ 100.48万
  • 项目类别:
A Brain Circuit Program for Understanding the Sensorimotor Basis of Behavior
用于理解行为的感觉运动基础的脑回路程序
  • 批准号:
    10202757
  • 财政年份:
    2017
  • 资助金额:
    $ 100.48万
  • 项目类别:
Revealing circuit control of neuronal excitation with next-generation voltage indicators
使用下一代电压指示器揭示神经元兴奋的电路控制
  • 批准号:
    9380741
  • 财政年份:
    2017
  • 资助金额:
    $ 100.48万
  • 项目类别:
Imaging structure and function
影像结构与功能
  • 批准号:
    10213733
  • 财政年份:
    2017
  • 资助金额:
    $ 100.48万
  • 项目类别:
A Brain Circuit Program for Understanding the Sensorimotor Basis of Behavior
用于理解行为的感觉运动基础的脑回路程序
  • 批准号:
    9444301
  • 财政年份:
    2017
  • 资助金额:
    $ 100.48万
  • 项目类别:
Project 3: Neural Basis of Motion Guidance Loops
项目 3:运动引导环的神经基础
  • 批准号:
    10202763
  • 财政年份:
    2017
  • 资助金额:
    $ 100.48万
  • 项目类别:
A new strategy for cell-type specific gene disruption in flies and mice
果蝇和小鼠细胞类型特异性基因破坏的新策略
  • 批准号:
    9297370
  • 财政年份:
    2015
  • 资助金额:
    $ 100.48万
  • 项目类别:

相似海外基金

Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2019
  • 资助金额:
    $ 100.48万
  • 项目类别:
    Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2018
  • 资助金额:
    $ 100.48万
  • 项目类别:
    Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2017
  • 资助金额:
    $ 100.48万
  • 项目类别:
    Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2016
  • 资助金额:
    $ 100.48万
  • 项目类别:
    Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
  • 批准号:
    385453-2009
  • 财政年份:
    2015
  • 资助金额:
    $ 100.48万
  • 项目类别:
    Collaborative Research and Development Grants
Algorithms to generate designs of potency experiments that use far fewer animals
生成使用更少动物的效力实验设计的算法
  • 批准号:
    8810865
  • 财政年份:
    2015
  • 资助金额:
    $ 100.48万
  • 项目类别:
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2015
  • 资助金额:
    $ 100.48万
  • 项目类别:
    Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
  • 批准号:
    385453-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 100.48万
  • 项目类别:
    Collaborative Research and Development Grants
Development of population-level algorithms for modelling genomic variation and its impact on cellular function in animals and plants
开发群体水平算法来建模基因组变异及其对动植物细胞功能的影响
  • 批准号:
    FT110100972
  • 财政年份:
    2012
  • 资助金额:
    $ 100.48万
  • 项目类别:
    ARC Future Fellowships
Advanced computational algorithms for brain imaging studies of freely moving animals
用于自由活动动物脑成像研究的先进计算算法
  • 批准号:
    DP120103813
  • 财政年份:
    2012
  • 资助金额:
    $ 100.48万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了