USING CAS9 ATFS TO ALTER TRANSCRIPTION NETWORKS AND CONVERT FIBROBLASTS TO GLIA
使用 CAS9 ATFS 改变转录网络并将成纤维细胞转化为胶质细胞
基本信息
- 批准号:8930207
- 负责人:
- 金额:$ 22.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-30 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:BindingCardiac MyocytesCell CountCell TherapyCell TransplantationCell physiologyCellsClustered Regularly Interspaced Short Palindromic RepeatsComputing MethodologiesCoupledDemyelinating DiseasesDevelopmentFibroblastsFutureGene ActivationGenesGeneticGenetic TranscriptionGenomicsGuide RNAHealthHematopoiesisMethodologyMethodsNeurogliaNeuronsNeuropathyOligodendrogliaPopulationProductionProteinsProtocols documentationRegulationSchwann CellsSpinal cord injurySystemTechnologyTranscriptional ActivationTransplantationactivating transcription factorbasecell typedifferential expressionfunctional genomicsgene repressionimprovedinduced pluripotent stem cellmutantnovelresearch studysmall moleculetranscription factortransdifferentiation
项目摘要
DESCRIPTION (provided by applicant): Schwann cell transplantation holds great promise for the treatment of spinal cord injuries and some neuropathies. In addition, Schwann cell functions are coming under wider scrutiny due to their potential importance in hematopoiesis. A major bottleneck hindering the progress of Schwann cell-based therapy and Schwann cell functional genomics is the lack of methods to produce large numbers of transplantable cells and the easy perturbation of their genetic network. Recently, it has become possible to reprogram fibroblasts into different cell types by expressing a small number of transcription factors. However, the efficiencies are typically low, and only a few cell types (e.g. neurons, cardiomyocytes, oligodendrocytes) have been produced to date. We propose to overcome these difficulties by creating artificial transcription factors (ATFs) based on the Cas9 protein. Cas9 can be directed to bind specific genomic sequences using "guide RNAs", so it will possible to specifically activate hundreds or even thousands of genes. We will use Cas9 ATFs to reprogram fibroblasts into neurons and Schwann cells by activating transcription factors that are specific to these cell types. We anticipate that this approach will substantially improve the efficiencies of existing transdifferentiation protocols (for conversion into neurons), as well as enable transdifferentiatio to previously unobtainable cell types (Schwann cells). Our preliminary experiments suggest our strategy is feasible. We have demonstrated that Cas9 ATFs can achieve potent gene activation (>100 fold), and we have developed computational methods to predict the sets of genes required for transdifferentiation. Our specific aims are as follows: 1) To determine the rules that
govern gene activation by Cas9-based artificial transcription factors (ATFs). 2) To develop tunable Cas9 mutant proteins bearing transcriptional activation or repression domains wherein their activity can be controlled by addition of small molecules to enable regulable perturbation of
large-scale genetic networks. 3) To transdifferentiate fibroblasts into Schwann cells or their precursors by simultaneously activating the expression of 75-100 transcription factors that are differentially expressed between these two cell types.
描述(由申请人提供):许旺细胞移植对脊髓损伤和某些神经病的治疗有很大的希望。此外,由于许旺细胞在造血中的潜在重要性,许旺细胞功能正在受到更广泛的审查。阻碍基于雪旺细胞的治疗和雪旺细胞功能基因组学进展的主要瓶颈是缺乏产生大量可移植细胞的方法以及它们的遗传网络容易受到干扰。最近,通过表达少量转录因子将成纤维细胞重编程为不同的细胞类型已经成为可能。然而,效率通常较低,并且迄今为止仅产生了少数细胞类型(例如神经元、心肌细胞、少突胶质细胞)。我们建议通过创建基于Cas9蛋白的人工转录因子(ATF)来克服这些困难。Cas9可以使用“向导RNA”定向结合特定的基因组序列,因此它将有可能特异性激活数百甚至数千个基因。我们将使用Cas9 ATF通过激活对这些细胞类型特异性的转录因子将成纤维细胞重编程为神经元和许旺细胞。我们预计,这种方法将大大提高现有转分化方案(转化为神经元)的效率,并使转分化成为以前无法获得的细胞类型(许旺细胞)。初步实验表明,该策略是可行的。我们已经证明了Cas9 ATF可以实现有效的基因激活(>100倍),并且我们已经开发了计算方法来预测转分化所需的基因集。我们的具体目标如下:1)确定规则,
通过基于Cas9的人工转录因子(ATF)控制基因激活。2)为了开发携带转录激活或阻遏结构域的可调Cas9突变体蛋白,其中它们的活性可以通过添加小分子来控制,以使得能够对转录激活或阻遏结构域进行可调控的扰动。
大规模的基因网络。3)通过同时激活75-100种在这两种细胞类型之间差异表达的转录因子的表达,将成纤维细胞转分化为许旺细胞或其前体细胞。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY D MILBRANDT其他文献
JEFFREY D MILBRANDT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY D MILBRANDT', 18)}}的其他基金
Multi-omics peripheral nerve atlas enables fine-mapping of pain molecular phenotypes
多组学周围神经图谱能够精细绘制疼痛分子表型
- 批准号:
10707409 - 财政年份:2022
- 资助金额:
$ 22.88万 - 项目类别:
Multi-omics peripheral nerve atlas enables fine-mapping of pain molecular phenotypes
多组学周围神经图谱能够精细绘制疼痛分子表型
- 批准号:
10593845 - 财政年份:2022
- 资助金额:
$ 22.88万 - 项目类别:
Jun O-GlcNAcylation Regulates Schwann Cell Injury Response
Jun O-GlcNAcylation 调节雪旺细胞损伤反应
- 批准号:
9915989 - 财政年份:2018
- 资助金额:
$ 22.88万 - 项目类别:
Metabolic Regulation of the Schwann Cell Injury Response
雪旺细胞损伤反应的代谢调节
- 批准号:
9527211 - 财政年份:2017
- 资助金额:
$ 22.88万 - 项目类别:
MOLECULAR CHARACTERIZATION OF NON-MYELINATING SCHWANN CELLS
非髓鞘化雪旺细胞的分子表征
- 批准号:
8679902 - 财政年份:2014
- 资助金额:
$ 22.88万 - 项目类别:
USING CAS9 ATFS TO ALTER TRANSCRIPTION NETWORKS AND CONVERT FIBROBLASTS TO GLIA
使用 CAS9 ATFS 改变转录网络并将成纤维细胞转化为胶质细胞
- 批准号:
8822614 - 财政年份:2014
- 资助金额:
$ 22.88万 - 项目类别:
MOLECULAR CHARACTERIZATION OF NON-MYELINATING SCHWANN CELLS
非髓鞘化雪旺细胞的分子特征
- 批准号:
8804969 - 财政年份:2014
- 资助金额:
$ 22.88万 - 项目类别:
相似海外基金
Modeling the spatiotemporal properties of crosstalk between RYR-mediated and IP3R-mediated calcium signaling in cardiac myocytes
模拟心肌细胞中 RYR 介导和 IP3R 介导的钙信号传导之间串扰的时空特性
- 批准号:
10701689 - 财政年份:2022
- 资助金额:
$ 22.88万 - 项目类别:
Understanding the mechanism why cardiac myocytes resist Myc-induced proliferation
了解心肌细胞抵抗 Myc 诱导的增殖的机制
- 批准号:
21K08854 - 财政年份:2021
- 资助金额:
$ 22.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidating molecular mechanisms of magnesium regulation to protect cardiac myocytes against life-style related diseases
阐明镁调节保护心肌细胞免受生活方式相关疾病的分子机制
- 批准号:
20K11518 - 财政年份:2020
- 资助金额:
$ 22.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Host-parasite lipid metabolism in Trypanosoma cruzi-infected cardiac myocytes
克氏锥虫感染心肌细胞中宿主寄生虫的脂质代谢
- 批准号:
10058037 - 财政年份:2020
- 资助金额:
$ 22.88万 - 项目类别:
Host-parasite lipid metabolism in Trypanosoma cruzi-infected cardiac myocytes
克氏锥虫感染心肌细胞中宿主寄生虫的脂质代谢
- 批准号:
10249356 - 财政年份:2020
- 资助金额:
$ 22.88万 - 项目类别:
A System to Optically Determine the Absolute Membrane Potential in Human iPSCD Cardiac Myocytes
光学测定人 iPSCD 心肌细胞绝对膜电位的系统
- 批准号:
10081467 - 财政年份:2020
- 资助金额:
$ 22.88万 - 项目类别:
Intramyocardial magnetic targeting of cardiac myocytes
心肌细胞的心肌内磁靶向
- 批准号:
405831333 - 财政年份:2018
- 资助金额:
$ 22.88万 - 项目类别:
Research Grants
Translational research for the development of novel heart failure therapy that targets signaling pathway in cardiac myocytes
开发针对心肌细胞信号通路的新型心力衰竭疗法的转化研究
- 批准号:
18K08121 - 财政年份:2018
- 资助金额:
$ 22.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)