Understanding Transmission with Integrated Genetic and Epidemiologic Inference

通过综合遗传和流行病学推断了解传播

基本信息

项目摘要

The overall goal of this project is to develop and validate novel methods to perform joint inference from combined epidemiologic and genetic data. This inference methodology seeks to provide estimates of fundamental transmission parameters, such as RO, as well as provide estimates of unobserved transmission trees and unobserved counts of susceptible, infected and recovered individuals in the population through time. We focus on two common scenarios. In the first, we target densely sampled, but localized, epidemiologic and genetic data, in which the person, place and time are known, and in which pathogen genetic samples are obtained. These sorts of datasets are commonly generated during transmission studies in households, schools, and similar settings, but also in analyses of novel outbreaks such as SARS or H7N9. Our inference framework seeks to estimate host-to-host transmission networks from combined epidemiologic and genetic data. In the second scenario, we target sparsely sampled, but broader in scope, epidemiologic and genetic data, in which we observe a time series of case reports and sparsely sampled pathogen genetic sequences. In this inference framework, we seek to model population-level transmission processes from a relatively small samples of cases. This framework utilizes coalescent theory to extrapolate from sampled genetic sequences to population-level dynamics. In implementation, we plan to utilize sophisticated inference methodology that combines Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) approaches in what's termed particle MCMC (PMCMC). We plan to utilize these novel inference methods to investigate transmission heterogeneity and local transmission structure in influenza, phenomena that have been difficult to fully analyze without a combined epidemiologic and genetic inference framework in place.
这个项目的总体目标是开发和验证新的方法来执行联合推理, 结合流行病学和遗传学数据。这一推理方法旨在提供 基本传输参数,如RO,以及提供未观察到的传输估计 树木和未观察到的人口中的易感,感染和恢复的个人, 时间我们关注两种常见的情况。首先,我们的目标是密集采样,但局部, 流行病学和遗传学数据,其中人、地点和时间已知,病原体 获得遗传样本。这类数据集通常在传输研究期间生成 在家庭、学校和类似环境中,以及在SARS或H7N9等新型疫情的分析中, 我们的推理框架试图从流行病学和免疫学的结合来估计宿主到宿主的传播网络。 和基因数据。在第二种情况下,我们的目标是抽样稀疏,但范围更广,流行病学 和遗传数据,在这些数据中,我们观察了病例报告的时间序列和稀疏采样的病原体遗传数据, 序列的在这个推理框架中,我们试图从一个 相对较小的案例。该框架利用聚结理论从采样的 基因序列到种群水平的动态。在实现中,我们计划利用复杂的推理, 结合马尔可夫链蒙特卡罗(MCMC)和顺序蒙特卡罗(SMC)的方法 粒子MCMC(Particle MCMC)我们计划利用这些新的推理方法, 研究流感传播异质性和局部传播结构, 如果没有流行病学和遗传学的综合推理框架,很难进行全面分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Trevor BC Bedford其他文献

Trevor BC Bedford的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Trevor BC Bedford', 18)}}的其他基金

Forecasting influenza evolution on a heterogeneous immune landscape
预测异质免疫环境中流感的演变
  • 批准号:
    10350150
  • 财政年份:
    2022
  • 资助金额:
    $ 32.53万
  • 项目类别:
Forecasting influenza evolution on a heterogeneous immune landscape
预测异质免疫环境中流感的演变
  • 批准号:
    10573200
  • 财政年份:
    2022
  • 资助金额:
    $ 32.53万
  • 项目类别:
Forecasting influenza evolution on a heterogeneous immune landscape
预测异质免疫环境中流感的演变
  • 批准号:
    10593425
  • 财政年份:
    2022
  • 资助金额:
    $ 32.53万
  • 项目类别:
Real-time tracking of virus evolution for vaccine strain selection and epidemiological investigation
实时跟踪病毒进化,用于疫苗株选择和流行病学调查
  • 批准号:
    10206776
  • 财政年份:
    2016
  • 资助金额:
    $ 32.53万
  • 项目类别:
Real-time tracking of virus evolution for vaccine strain selection and epidemiological investigation
实时跟踪病毒进化,用于疫苗株选择和流行病学调查
  • 批准号:
    10687985
  • 财政年份:
    2016
  • 资助金额:
    $ 32.53万
  • 项目类别:
Real-time tracking of virus evolution for vaccine strain selection and epidemiological investigation
实时跟踪病毒进化,用于疫苗株选择和流行病学调查
  • 批准号:
    10397121
  • 财政年份:
    2016
  • 资助金额:
    $ 32.53万
  • 项目类别:
Real-time tracking of virus evolution for vaccine strain selection and epidemiological investigation
实时跟踪病毒进化,用于疫苗株选择和流行病学调查
  • 批准号:
    10616295
  • 财政年份:
    2016
  • 资助金额:
    $ 32.53万
  • 项目类别:
Understanding Transmission with Integrated Genetic and Epidemiologic Inference
通过综合遗传和流行病学推断了解传播
  • 批准号:
    9307943
  • 财政年份:
  • 资助金额:
    $ 32.53万
  • 项目类别:

相似海外基金

Develop a programme to support the prevention of Non-Communicable Diseases (NCDs) in the Republic of Kenya.
制定一项计划,支持肯尼亚共和国预防非传染性疾病 (NCD)。
  • 批准号:
    23K09892
  • 财政年份:
    2023
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research Training in Global Non-Communicable Diseases
全球非传染性疾病研究培训
  • 批准号:
    10554719
  • 财政年份:
    2023
  • 资助金额:
    $ 32.53万
  • 项目类别:
Non-Communicable Diseases
非传染性疾病
  • 批准号:
    MC_UU_00033/3
  • 财政年份:
    2023
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Intramural
Usefulness of metabolite biomarker as a common pathway for the prevention of non-communicable diseases and frailty
代谢生物标志物作为预防非传染性疾病和虚弱的常见途径的有用性
  • 批准号:
    23H00452
  • 财政年份:
    2023
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Strengthening Research Capacity in Innovative Global Health Technologies for Non-Communicable Diseases in Uganda
加强乌干达非传染性疾病创新全球卫生技术的研究能力
  • 批准号:
    10469877
  • 财政年份:
    2022
  • 资助金额:
    $ 32.53万
  • 项目类别:
Building capacity for Implementation Science research in Non-Communicable Diseases (BImS-NCDs)
非传染性疾病(BImS-NCD)实施科学研究的能力建设
  • 批准号:
    10469788
  • 财政年份:
    2022
  • 资助金额:
    $ 32.53万
  • 项目类别:
Building capacity for Implementation Science research in Non-Communicable Diseases (BImS-NCDs)
非传染性疾病(BImS-NCD)实施科学研究的能力建设
  • 批准号:
    10594552
  • 财政年份:
    2022
  • 资助金额:
    $ 32.53万
  • 项目类别:
Occupational disparities in survival from cancer and non-communicable diseases
癌症和非传染性疾病生存率的职业差异
  • 批准号:
    22K17401
  • 财政年份:
    2022
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
"Increasing take-up of preventative health behaviours to mitigate the rise of non-communicable diseases in lower- and middle- income countries: a comp
“在低收入和中等收入国家中,更多地采用预防性健康行为来减缓非传染性疾病的增加:一项比较
  • 批准号:
    2751288
  • 财政年份:
    2022
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Studentship
Development of a comprehensive self-care system utilizing big data/AI to cure non-communicable diseases and validation of its effectiveness
开发利用大数据/人工智能治疗非传染性疾病的综合自我护理系统并验证其有效性
  • 批准号:
    22H03529
  • 财政年份:
    2022
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了