ENIGMA Center for Worldwide Medicine, Imaging & Genomics

ENIGMA 全球医学影像中心

基本信息

  • 批准号:
    8935792
  • 负责人:
  • 金额:
    $ 236.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-29 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The ENIGMA Center for Worldwide Medicine, Imaging and Genomics is an unprecedented global effort bringing together 287 scientists and all their vast biomedical datasets, to work on 9 major human brain diseases: schizophrenia, bipolar disorder, major depression, ADHD, OCD, autism, 22q deletion syndrome, HIV/AIDS and addictions. ENIGMA integrates images, genomes, connectomes and biomarkers on an unprecedented scale, with new kinds of computation for integration, clustering, and learning from complex biodata types. ENIGMA, founded in 2009, performed the largest brain imaging studies in history (N>26,000 subjects; Stein +207 authors, Nature Genetics, 2012) screening genomes and images at 125 institutions in 20 countries. Responding to the BD2K RFA, ENIGMA'S Working Groups target key programmatic goals of BD2K funders across the NIH, including NIMH, NIBIB, NICHD, NIA, NINDS, NIDA, NIAAA, NHGRI and FIC. ENIGMA creates novel computational algorithms and a new model for Consortium Science to revolutionize the way Big Data is handled, shared and optimized. We unleash the power of sparse machine learning, and high dimensional combinatorics, to cluster and inter-relate genomes, connectomes, and multimodal brain images to discover diagnostic and prognostic markers. The sheer computational power and unprecedented collaboration advances distributed computation on Big Data leveraging US and non-US infrastructure, talents and data. Our projects will better identify factors that resist and promote brain disease, that help diagnosis and prognosis, and identify new mechanisms and drug targets. Our Data Science Research Cores create new algorithms to handle Big Data from (1) Imaging Genomics, (2) Connectomics, and (3) Machine Learning & Clinical Prediction. Led by world leaders in the field who developed major software packages (e.g., Jieping Ye/SLEP), we prioritize trillions of computations for gene-image clustering, distributed multi-task machine learning, and new approaches to screen brain connections based on the Partition Problem in mathematics. Our ENIGMA Training Program offers a world class Summer School coordinated with other BD2K Centers, worldwide scientific exchanges. Challenge-based Workshops and hackathons to stimulate innovation, and Web Portals to disseminate tools and engage scientists in Big Data science.
描述(由申请人提供):ENIGMA全球医学、成像和基因组学中心是一项前所未有的全球努力,汇集了287名科学家及其所有庞大的生物医学数据集,致力于研究9种主要的人类脑部疾病:精神分裂症、双相情感障碍、重度抑郁症、多动症、强迫症、自闭症、22 q缺失综合征、艾滋病毒/艾滋病和成瘾。ENIGMA以前所未有的规模整合了图像、基因组、连接组和生物标志物,并使用新的计算方法进行整合、聚类和从复杂的生物数据类型中学习。ENIGMA成立于2009年,进行了历史上最大规模的脑成像研究(N> 26,000名受试者; Stein +207名作者,Nature Genetics,2012),在20个国家的125个机构筛选基因组和图像。为了响应BD 2K RFA,ENIGMA的工作组针对整个NIH的BD 2K资助者的关键计划目标,包括NIMH,NIBIB,NICHD,NIA,NINDS,NIDA,NIAAA,NHGRI和FIC。ENIGMA为Consortium Science创建了新颖的计算算法和新模型,以彻底改变大数据的处理,共享和优化方式。我们释放稀疏机器学习和高维组合学的力量,将基因组、连接体和多模式大脑图像进行聚类和相互关联,以发现诊断和预后标记。纯粹的计算能力和前所未有的协作推动了大数据的分布式计算,利用了美国和非美国的基础设施、人才和数据。我们的项目将更好地确定抵抗和促进脑部疾病的因素,帮助诊断和预后,并确定新的机制和药物靶点。我们的数据科学研究核心创建新的算法来处理来自(1)成像基因组学,(2)连接组学和(3)机器学习和临床预测的大数据。由该领域的世界领导者领导,他们开发了主要的软件包(例如,Jieping Ye/SLEP),我们优先考虑数万亿次基因图像聚类、分布式多任务机器学习以及基于数学中的分区问题筛选大脑连接的新方法。 我们的ENIGMA培训计划提供与其他BD 2K中心协调的世界级暑期学校,全球科学交流。基于网络的研讨会和黑客马拉松,以刺激创新,以及门户网站,以传播工具和吸引科学家参与大数据科学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PAUL M THOMPSON其他文献

PAUL M THOMPSON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PAUL M THOMPSON', 18)}}的其他基金

CARE4Kids: Imaging Biomarker Core
CARE4Kids:成像生物标志物核心
  • 批准号:
    10203601
  • 财政年份:
    2021
  • 资助金额:
    $ 236.69万
  • 项目类别:
ENIGMA World Aging Center
ENIGMA世界老龄化中心
  • 批准号:
    10576402
  • 财政年份:
    2021
  • 资助金额:
    $ 236.69万
  • 项目类别:
ENIGMA World Aging Center
ENIGMA世界老龄化中心
  • 批准号:
    10328963
  • 财政年份:
    2021
  • 资助金额:
    $ 236.69万
  • 项目类别:
FiberNET: Deep learning to evaluate brain tract integrity worldwide and in AD
FiberNET:深度学习评估全球和 AD 脑道完整性
  • 批准号:
    10814696
  • 财政年份:
    2020
  • 资助金额:
    $ 236.69万
  • 项目类别:
Neuroimaging Core
神经影像核心
  • 批准号:
    10216924
  • 财政年份:
    2018
  • 资助金额:
    $ 236.69万
  • 项目类别:
ENIGMA-SD: Understanding Sex Differences in Global Mental Health through ENIGMA
ENIGMA-SD:通过 ENIGMA 了解全球心理健康中的性别差异
  • 批准号:
    9892045
  • 财政年份:
    2018
  • 资助金额:
    $ 236.69万
  • 项目类别:
Neuroimaging Core
神经影像核心
  • 批准号:
    10456750
  • 财政年份:
    2018
  • 资助金额:
    $ 236.69万
  • 项目类别:
Multi-Source Sparse Learning to Identify MCI and Predict Decline
多源稀疏学习识别 MCI 并预测衰退
  • 批准号:
    9008380
  • 财政年份:
    2016
  • 资助金额:
    $ 236.69万
  • 项目类别:
Data Science Research
数据科学研究
  • 批准号:
    9108711
  • 财政年份:
    2016
  • 资助金额:
    $ 236.69万
  • 项目类别:
ENIGMA Center for Worldwide Medicine, Imaging & Genomics
ENIGMA 全球医学影像中心
  • 批准号:
    9108710
  • 财政年份:
    2014
  • 资助金额:
    $ 236.69万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 236.69万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 236.69万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 236.69万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 236.69万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 236.69万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 236.69万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 236.69万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 236.69万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 236.69万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 236.69万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了