Data Science Research
数据科学研究
基本信息
- 批准号:9108711
- 负责人:
- 金额:$ 179.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2018-09-30
- 项目状态:已结题
- 来源:
- 关键词:AIDS/HIV problemAffectAlgorithmsAttention deficit hyperactivity disorderAutistic DisorderBig DataBiological MarkersBipolar DisorderBrainBrain DiseasesBrain MappingBrain imagingClinicalCollaborationsCombinatoricsComputer softwareComputersCountryDataData ScienceData SetDiagnosisDiagnostic and Statistical Manual of Mental DisordersDiffusionDiseaseEconomicsGenesGeneticGenetic MarkersGenetic screening methodGenomeGenomicsGoalsHIVHippocampus (Brain)ImageInstitutionLeadLearningLinkMRI ScansMachine LearningMajor Depressive DisorderMapsMathematicsMeasuresMedicineMental DepressionMeta-AnalysisMiningModelingMovementMultimodal ImagingPatternPharmaceutical PreparationsResearchResourcesSavingsSchizophreniaScienceSiteTestingVariantWorkaddictionbiomarker discoverybrain tissuebrain volumechromosome 22q deletion syndromeclinical biomarkerscohortcomputer infrastructureconnectomecost effectivedisease diagnosisdisorder riskgene discoverygenetic variantgenome wide association studygenome-wide analysisgenomic biomarkerimaging modalityinnovationlifestyle factorsmultitaskneuroimagingnew therapeutic targetnoveloutcome forecastpredictive modelingprogramsrisk variantscreeningsearch enginetoolworking group
项目摘要
Our comprehensive Data Science Research program is organized into 4 complementary Algorithm Research
Cores: (1) Imaging Genomics, (2) Connectomics, (3) Machine Learning & Clinical Prediction, and (4) ENIGMA
Disease Working Groups. World leaders in each field lead each Core, tackling computational questions on a
scale not previously imagined or attempted. BigData tools will fuel ENIGMA'S worldwide scientific discoveries.
We combine innovations in mathematics, machine learning, genomics, consortium science, and expertise from
>20 countries and >125 institutions. ENIGMA is not a project, it is a scientific movement of rapidly and
constantly Interacting collaborations that support each other. ENIGMA cohorts boost each other's power with
gigantic datasets, tools and expertise to maximally exploit each other's data, performing some of the world's
largest disease studies, beyond what any one site could perform alone. ENIGMA is distributed computation at
its best, drawing on gigantic datasets and expertise. We create massive economic savings - drawing on
worldwide computational and infrastructural resources vastly beyond what any one site in any one country
would apply to a targeted biomedical goal. We bring BigData Science and the ENIGMA Consortium together
to advance Worldwide Medicine. In Cores 1 and 2 we mine images and connectomes for genetic markers that
re-wire the brain or boost brain tissue loss, using new mathematics to prioritize and organize trillions of
computations, jointly searching images and genomes. In Core 3, we unleash multi-task sparse learning to
predict diagnosis and prognosis from vast high-dimensional biomarker data in the largest neuroimaging
genetics datasets ever. In Core 4 we use these tools in a massive distributed computation: a vast, mutually
interacting set of 9 Worldwide Working Groups, led by experts in 9 major diseases of the brain - schizophrenia,
bipolar, major depression, ADHD, autism, OCD, 22q deletion syndrome, HIV/AIDS, and addictions. We will
discover what genes, medications, and lifestyle factors promote or resist brain disease worldwide. Our
ENIGMA Center is a worldwide movement in mutually supportive discovery in medicine - spurred on by tools
to perform gigantic computations never before Imagined.
我们全面的数据科学研究计划分为4个互补的算法研究
核心:(1)成像基因组学,(2)连接组学,(3)机器学习和临床预测,(4)ENIGMA
疾病工作组。每个领域的世界领导者领导着每个核心,在一个
以前没有想象或尝试过的规模。大数据工具将推动ENIGMA的全球科学发现。
我们将联合收割机在数学、机器学习、基因组学、联盟科学方面的创新和来自
>20个国家和>125个机构。ENIGMA不是一个项目,它是一个科学运动,
不断相互支持的互动协作。ENIGMA的同伙们互相增强力量,
巨大的数据集,工具和专业知识,以最大限度地利用彼此的数据,执行一些世界上
最大的疾病研究,超出了任何一个网站可以单独执行。ENIGMA是分布式计算,
它是最好的,利用巨大的数据集和专业知识。我们创造了大量的经济储蓄-利用
世界范围内的计算和基础设施资源远远超过任何一个国家的任何一个站点
将适用于有针对性的生物医学目标。我们将BigData Science和ENIGMA Consortium结合在一起
推动世界医学的发展在核心1和2中,我们挖掘图像和连接体的遗传标记,
重新连接大脑或促进脑组织的损失,使用新的数学来优先考虑和组织数万亿
计算,联合搜索图像和基因组。在Core 3中,我们释放了多任务稀疏学习,
从最大的神经成像系统中的大量高维生物标志物数据预测诊断和预后
遗传学数据集。在Core 4中,我们在大规模分布式计算中使用这些工具:
由9个全球工作组组成的互动组,由9种主要脑部疾病-精神分裂症,
躁郁症、重度抑郁症、多动症、自闭症、强迫症、22 q缺失综合征、艾滋病毒/艾滋病和成瘾。我们将
发现哪些基因,药物和生活方式因素促进或抵抗世界各地的脑部疾病。我们
ENIGMA中心是一个在医学上相互支持的发现的全球性运动-由工具推动
来进行从未想象过的巨大计算
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PAUL M THOMPSON其他文献
PAUL M THOMPSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PAUL M THOMPSON', 18)}}的其他基金
FiberNET: Deep learning to evaluate brain tract integrity worldwide and in AD
FiberNET:深度学习评估全球和 AD 脑道完整性
- 批准号:
10814696 - 财政年份:2020
- 资助金额:
$ 179.22万 - 项目类别:
ENIGMA-SD: Understanding Sex Differences in Global Mental Health through ENIGMA
ENIGMA-SD:通过 ENIGMA 了解全球心理健康中的性别差异
- 批准号:
9892045 - 财政年份:2018
- 资助金额:
$ 179.22万 - 项目类别:
Multi-Source Sparse Learning to Identify MCI and Predict Decline
多源稀疏学习识别 MCI 并预测衰退
- 批准号:
9008380 - 财政年份:2016
- 资助金额:
$ 179.22万 - 项目类别:
ENIGMA Center for Worldwide Medicine, Imaging & Genomics
ENIGMA 全球医学影像中心
- 批准号:
9108710 - 财政年份:2014
- 资助金额:
$ 179.22万 - 项目类别:
Growth factors, neuroinflammation, exercise, and brain integrity
生长因子、神经炎症、运动和大脑完整性
- 批准号:
8696676 - 财政年份:2014
- 资助金额:
$ 179.22万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 179.22万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 179.22万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 179.22万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 179.22万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 179.22万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 179.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 179.22万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 179.22万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 179.22万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 179.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists