FiberNET: Deep learning to evaluate brain tract integrity worldwide and in AD
FiberNET:深度学习评估全球和 AD 脑道完整性
基本信息
- 批准号:10814696
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:5 year oldAccelerationAddressAffectAgeAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease pathologyAlzheimer&aposs disease riskAlzheimer’s disease biomarkerAmyloidAmyloid beta-ProteinBrainBrain DiseasesBrain InjuriesBrain PathologyBrain scanCerebrumClinicalCognitiveDataData PoolingData SetDatabasesDedicationsDevelopmentDiffusion Magnetic Resonance ImagingDiseaseEarly identificationElderlyEnsureEtiologyFiberFutureGenesGenetic RiskGenomicsGenotypeGlucoseHaplotypesHippocampusImpaired cognitionIndividualInternationalLearningLifeLongevityMRI ScansMachine LearningMathematicsMeasuresMethodsMolecularNeural PathwaysObesityPET positivityPathologicPathway interactionsPatternPersonsPharmaceutical PreparationsPharmacologic SubstancePopulationPositron-Emission TomographyPower SourcesPrevalencePropertyReproducibilityResearchRiskRisk FactorsRunningSchemeScientistSocietiesSourceStandardizationStressStructureSymptomsTechniquesTestingTissuesTreatment EfficacyWomanWorkabeta depositionage relatedaging brainapolipoprotein E-4biobankbrain magnetic resonance imagingbrain tractbrain volumeburden of illnessclinical predictorscognitive performancecohortconvolutional neural networkcost estimatedata harmonizationdata repositorydeep learningglobal healthhigh riskhuman old age (65+)imaging biomarkerin vivoindexinginnovationlearning strategymagnetic resonance imaging biomarkermenmild cognitive impairmentneural tractneuroimagingneuroimaging markernormal agingnovelnovel strategiesparent grantpolygenic risk scoreprotective factorsrisk varianttau Proteinstoolwhite matterwhite matter damageβ-amyloid burden
项目摘要
PARENT GRANT - PROJECT SUMMARY/ABSTRACT
Alzheimer’s disease (AD) threatens to devastate society worldwide. For every 5 years of age over age 65, the
prevalence of AD doubles, costing an estimated $277 billion in the U.S. in 2018, a $20 billion increase from the
previous year. Here we propose a coordinated global study of brain aging and AD that uses novel approaches
to assess the white matter microstructure of the brain’s neural pathways - a crucial brain metric that breaks down
on the pathway from molecular AD pathology to clinical decline. With a novel deep learning tool, called FiberNET,
we extract and analyze the brain’s white matter fiber bundles obtained from diffusion MRI (dMRI) scans across
the world, and answer 3 key questions: how do the brain’s tracts age worldwide? How does tract aging depend
on Alzheimer’s genetic risk and brain amyloid load? Can tract metrics predict clinical decline better, when
combined with standard, accepted biomarkers of AD? The proposal unites experts in AD, neuroimaging, machine
learning, and large-scale genomics, to relate new aging metrics (tract microstructure) to protective and adverse
factors. Novel mathematics include innovations in picking up crossing fibers and tissue properties from multi-
shell diffusion MRI, and convolutional neural nets to learn patterns of aging in neural pathways worldwide. We
aim to (1) use FiberNET, our deep learning method, to extract tracts from brain dMRI scans worldwide, and
create normative charts for normal tract aging in 20,000 people across the lifespan; (2) ask how the tract aging
trajectory depends on the AD protective genotype APOE2, risk genotype APOE4, and brain amyloid load
measured with amyloid-sensitive PET. The proposed study will create standardized charts of white matter tract
integrity across the lifespan to serve as a guidepost for normative white matter aging. We build on our ENIGMA-
Lifespan work - which analyzed brain MRI data from 10,144 people from 91 cohorts - to create lifespan charts
for the brain’s major tracts from dMRI, yielding fundamental normative information for comparisons of AD groups
worldwide. This lifespan approach will aid the discovery of personal factors that accelerate aging relative to
population norms (e.g., APOE genotype, and amyloid load). To ensure the impact of the developments, we
created a team of beta-testers to help test and refine the methods, that is tightly integrated into our ENIGMA
consortium, which is dedicated to cross-cohort data harmonization. This global approach to aging and AD will
offer a new source of power to “break the logjam” in discovering factors that affect the brain as we age.
项目资助-项目概要/摘要
阿尔茨海默病(Alzheimer's disease,AD)是一种严重威胁人类健康的疾病。65岁以上每满5岁,
AD的患病率翻了一番,2018年美国的成本估计为2770亿美元,比2018年增加了200亿美元。
上年在这里,我们提出了一个协调的全球研究大脑老化和AD,使用新的方法
来评估大脑神经通路的白色微观结构--这是一个关键的大脑指标,
从分子AD病理学到临床衰退的途径。借助一种名为FiberNET的新型深度学习工具,
我们提取并分析了大脑的白色物质纤维束,这些纤维束是从扩散MRI(dMRI)扫描中获得的,
世界,并回答3个关键问题:大脑的神经束如何在世界范围内老化?道老化如何取决于
老年痴呆症的遗传风险和大脑淀粉样蛋白含量道指标能否更好地预测临床下降,当
与标准的、公认的AD生物标志物相结合?该提案联合了AD,神经成像,机器
学习和大规模基因组学,将新的衰老指标(道微结构)与保护性和不良反应联系起来,
因素新的数学包括创新,在挑选交叉纤维和组织性质,从多个,
壳扩散MRI和卷积神经网络来学习世界范围内神经通路的老化模式。我们
目标是(1)使用FiberNET,我们的深度学习方法,从全球范围内的大脑dMRI扫描中提取神经束,
在20,000人的整个生命周期中创建正常道老化的标准图表;(2)询问道老化是如何发生的。
轨迹取决于AD保护基因型APOE 2、风险基因型APOE 4和脑淀粉样蛋白负荷
用淀粉样蛋白敏感的PET测量。拟议的研究将创建白色物质束的标准化图表
完整性作为规范性白色物质老化的路标。我们建立在我们的谜-
寿命工作-分析了来自91个队列的10,144人的大脑MRI数据-以创建寿命图表
对于来自dMRI的大脑主要神经束,产生用于AD组比较的基本规范性信息
国际吧这种寿命方法将有助于发现加速衰老的个人因素,
人口标准(例如,APOE基因型和淀粉样蛋白负荷)。为了确保事态发展的影响,我们
创建了一个beta测试团队来帮助测试和改进这些方法,这些方法紧密地集成到我们的ENIGMA中。
该联盟致力于跨队列数据协调。这种全球性的老龄化和AD方法将
提供了一个新的力量来源,以“打破僵局”,发现影响大脑的因素,因为我们的年龄。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting.
用于在低数据设置中生成基于合成纤维束成像的捆绑模板的变分自动编码器。
- DOI:10.1109/embc40787.2023.10340009
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Feng,Yixue;Chandio,BramshQ;Thomopoulos,SophiaI;Chattopadhyay,Tamoghna;Thompson,PaulM
- 通讯作者:Thompson,PaulM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PAUL M THOMPSON其他文献
PAUL M THOMPSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PAUL M THOMPSON', 18)}}的其他基金
ENIGMA-SD: Understanding Sex Differences in Global Mental Health through ENIGMA
ENIGMA-SD:通过 ENIGMA 了解全球心理健康中的性别差异
- 批准号:
9892045 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Multi-Source Sparse Learning to Identify MCI and Predict Decline
多源稀疏学习识别 MCI 并预测衰退
- 批准号:
9008380 - 财政年份:2016
- 资助金额:
$ 7.5万 - 项目类别:
ENIGMA Center for Worldwide Medicine, Imaging & Genomics
ENIGMA 全球医学影像中心
- 批准号:
9108710 - 财政年份:2014
- 资助金额:
$ 7.5万 - 项目类别:
Growth factors, neuroinflammation, exercise, and brain integrity
生长因子、神经炎症、运动和大脑完整性
- 批准号:
8696676 - 财政年份:2014
- 资助金额:
$ 7.5万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)