ENIGMA World Aging Center

ENIGMA世界老龄化中心

基本信息

  • 批准号:
    10576402
  • 负责人:
  • 金额:
    $ 64.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-15 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT One in three seniors dies with Alzheimer’s disease (AD) or another dementia - diseases that cost the nation $259 billion, to rise to $1.1 trillion by 2050 (Alzheimer’s Association, 2017). Despite the vast personal and economic cost of these diseases, two major barriers stall efforts to discover key biological mechanisms that influence brain aging. First, the sheer cost of data collection means that most national initiatives have limited power to detect factors that affect brain aging. Even in datasets of N=1,000+ people (e.g., ADNI) – the power to discover modulators of brain aging is limited and may not generalize worldwide. Second, with the crisis of reproducibility, we do not always know if a finding will replicate; and if not, if this is due to true population heterogeneity or problems with methods. ENIGMA offers a coordinated global approach to solve these problems. ENIGMA’s World Aging Center is a global brain aging study that builds on our vast and highly productive ENIGMA consortium - a global network of 340 institutions in 45 countries. ENIGMA published the largest-ever genetic studies of the brain (Nature 2017; Science 2020), and the largest neuroimaging studies of 5 major psychiatric disorders. ENIGMA’s World Aging Center is a concerted global effort to pool all available data, methods, expertise and capital infrastructure to discover factors that affect brain aging. Our long-term goal is to identify personalized biological predictors of brain structural and functional decline and assess how they generalize globally. We have 4 aims: Aim 1: ENIGMA-Lifespan. Develop Lifespan Charts for Brain and Neural Tract Aging in 20,000 people. We will create charts showing how MRI brain measures change throughout life in 20,000 people, aged 1-92. We will compute a composite brain aging score, ‘Brain Age’, from available MRI, DTI, rsFMRI data, that measures how much the brain deviates from expected values, for a person’s age and sex. Aim 2: ENIGMA-Epigenetics. Relate genome-wide methylation levels to brain metrics in 10,000+ people, to discover epigenetic markers of accelerated brain aging. We discovered 2 epigenetic loci promoting brain aging in pilot studies. We will compute a “epigenetic clock” and test if it predicts brain metrics better than simple biological age. Aim 3: ENIGMA-Plasticity. Discover genomic loci that promote or mitigate brain tissue loss, in > 37 worldwide cohorts with longitudinal MRI. Aim 4: ENIGMA-Alzheimer’s Disease (New Aim). Meta-analyze the role of APOE, AD polygenic risk, and a new risk score for accelerated atrophy on neuroimaging biomarkers in aging and AD, including amyloid and FDG PET. These aims seek to analyze worldwide imaging, epigenetic, and clinical data with harmonized methods. We aim to create new aging “clocks” and reveal targetable risk factors and modifiers of brain aging in the genome and epigenome, test how and when they shift AD biomarkers, and test their generalizability worldwide.
摘要 三分之一的老年人死于阿尔茨海默病(AD)或其他痴呆症-疾病花费了国家2590亿美元,到2050年将上升到1.1万亿美元(阿尔茨海默病协会,2017)。尽管这些疾病造成了巨大的个人和经济损失,但两个主要障碍阻碍了发现影响大脑衰老的关键生物机制的努力。首先,数据收集的成本意味着大多数国家计划在检测影响大脑老化的因素方面的能力有限。即使在N= 1,000+人的数据集中(例如,ADNI)-发现大脑老化调节剂的能力是有限的,可能不会在世界范围内推广。其次,由于再现性危机,我们并不总是知道一个发现是否会重复;如果不是,这是由于真正的群体异质性或方法问题。ENIGMA提供了一个协调的全球方法来解决这些问题。ENIGMA的世界老龄化中心是一个全球性的大脑老化研究,建立在我们庞大而高效的ENIGMA联盟的基础上-一个由45个国家的340个机构组成的全球网络。ENIGMA发表了有史以来规模最大的大脑遗传学研究(Nature 2017; Science 2020),以及5种主要精神疾病的最大神经影像学研究。ENIGMA的世界老龄化中心是一个协调一致的全球努力,汇集所有可用的数据,方法,专业知识和资本基础设施,以发现影响大脑老化的因素。我们的长期目标是确定大脑结构和功能衰退的个性化生物预测因子,并评估它们如何在全球范围内推广。我们有四个目标:目标1:谜-寿命。在20,000人中开发大脑和神经系统老化的寿命图表。我们将创建图表,显示MRI大脑如何测量2万名1-92岁的人在一生中的变化。我们将根据现有的MRI、DTI、rsFMRI数据计算一个复合大脑老化评分“Brain Aging”,该评分衡量一个人的年龄和性别的大脑偏离预期值的程度。目标2:ENIGMA-表观遗传学。将全基因组甲基化水平与10,000多人的大脑指标相关联,以发现大脑加速老化的表观遗传标记。我们在初步研究中发现了两个促进脑老化的表观遗传位点。我们将计算一个“表观遗传时钟”,并测试它是否能比简单的生物年龄更好地预测大脑指标。目标3:ENIGMA-可塑性。在全球> 37个纵向MRI队列中发现促进或减轻脑组织损失的基因组位点。目标4:谜-阿尔茨海默病(新目标)。荟萃分析APOE、AD多基因风险和加速萎缩的新风险评分对衰老和AD神经影像学生物标志物的作用,包括淀粉样蛋白和FDG PET。这些目标旨在通过协调一致的方法分析全球成像,表观遗传和临床数据。我们的目标是创建新的衰老“时钟”,并揭示基因组和表观基因组中脑衰老的靶向风险因素和修饰因子,测试它们如何以及何时改变AD生物标志物,并测试它们在全球范围内的普遍性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PAUL M THOMPSON其他文献

PAUL M THOMPSON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PAUL M THOMPSON', 18)}}的其他基金

CARE4Kids: Imaging Biomarker Core
CARE4Kids:成像生物标志物核心
  • 批准号:
    10203601
  • 财政年份:
    2021
  • 资助金额:
    $ 64.94万
  • 项目类别:
ENIGMA World Aging Center
ENIGMA世界老龄化中心
  • 批准号:
    10328963
  • 财政年份:
    2021
  • 资助金额:
    $ 64.94万
  • 项目类别:
FiberNET: Deep learning to evaluate brain tract integrity worldwide and in AD
FiberNET:深度学习评估全球和 AD 脑道完整性
  • 批准号:
    10814696
  • 财政年份:
    2020
  • 资助金额:
    $ 64.94万
  • 项目类别:
Neuroimaging Core
神经影像核心
  • 批准号:
    10216924
  • 财政年份:
    2018
  • 资助金额:
    $ 64.94万
  • 项目类别:
ENIGMA-SD: Understanding Sex Differences in Global Mental Health through ENIGMA
ENIGMA-SD:通过 ENIGMA 了解全球心理健康中的性别差异
  • 批准号:
    9892045
  • 财政年份:
    2018
  • 资助金额:
    $ 64.94万
  • 项目类别:
Neuroimaging Core
神经影像核心
  • 批准号:
    10456750
  • 财政年份:
    2018
  • 资助金额:
    $ 64.94万
  • 项目类别:
Multi-Source Sparse Learning to Identify MCI and Predict Decline
多源稀疏学习识别 MCI 并预测衰退
  • 批准号:
    9008380
  • 财政年份:
    2016
  • 资助金额:
    $ 64.94万
  • 项目类别:
Data Science Research
数据科学研究
  • 批准号:
    9108711
  • 财政年份:
    2016
  • 资助金额:
    $ 64.94万
  • 项目类别:
ENIGMA Center for Worldwide Medicine, Imaging & Genomics
ENIGMA 全球医学影像中心
  • 批准号:
    9108710
  • 财政年份:
    2014
  • 资助金额:
    $ 64.94万
  • 项目类别:
Growth factors, neuroinflammation, exercise, and brain integrity
生长因子、神经炎症、运动和大脑完整性
  • 批准号:
    8696676
  • 财政年份:
    2014
  • 资助金额:
    $ 64.94万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 64.94万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 64.94万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了