Mechanics of fibrosis in 3D biomimetic extracellular matrices
3D 仿生细胞外基质中的纤维化机制
基本信息
- 批准号:8891850
- 负责人:
- 金额:$ 13.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-12 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsArteriosclerosisAwardBedsBiocompatible MaterialsBiologyBiomimeticsBiophysical ProcessCell DensityCell ProliferationCellsCessation of lifeCicatrixDataDepositionDiseaseDisease ProgressionElementsEmployee StrikesEngineeringExtracellular MatrixFamilyFeedbackFibroblastsFibrosisFutureGelGenerationsGeometryGoalsGrantIn SituIn VitroInjuryInvestigationKnowledgeLightMeasurementMeasuresMechanicsMediatingMentorsMethodsModelingMolecular BiologyMonitorMonomeric GTP-Binding ProteinsMyocardial InfarctionMyofibroblastMyosin ATPaseOrganOrgan failurePathway interactionsPhasePhenotypeProcessPropertyPsychological reinforcementPulmonary FibrosisResearchRho-associated kinaseRoleSignal PathwaySignal TransductionStructureTechniquesTestingTherapeuticTissue EngineeringTissue ModelTissuesTractionTrainingTraining SupportTransforming Growth Factor betaTranslatingWorkWound Healingbiomaterial developmentbiophysical modelcell behaviorconnective tissue developmentcytokinedensitydriving forceexperienceextracellularin vivomechanical behaviormodel developmentneurotensin mimic 1novelnovel strategiesprogramsregenerative therapyresponserhotherapeutic targettool
项目摘要
DESCRIPTION (provided by applicant): Project Summary Fibrosis is a central component of numerous major diseases and is implicated in an estimated 45% of all deaths in the developed world. Hallmarks of fibrosis include myofibroblast (MF) induction, excessive MF proliferation and matrix synthesis, and stiffening or contraction of the extracellular matrix (ECM), but how these changes are interrelated and feedback to reinforce the fibrotic process is not understood. This is in part because we lack a fundamental understanding of how cells sense, mechanically respond to, and in turn alter the structure and mechanics of their surroundings during fibrosis. To fill ths gap in our knowledge and develop treatments that target the mechanisms of fibrosis, we need experimental platforms that allow us to 1) accurately capture the fibrous structure and mechanical behavior of tissues, and 2) monitor the mechanical forces that drive MF differentiation, proliferation, and subsequent fibrotic stiffening. The overall focus of the proposd work is to connect intracellular and extracellular mechanics during the initiation (K99) and reinforcement (R00) of MF induction and proliferation. During the K99 phase, we will develop a technique to measure traction forces in a newly established synthetic ECM that is fibrous, mechanically tunable, and can be reorganized by cells. Using this platform, we will examine whether TGF-ß induces RhoA-mediated fibril reorganization to increase traction force generation and subsequent MF induction and proliferation. With an understanding of how MF induction and proliferation is initiated, we will go on to examine how increased MF cell density reinforces fibrotic changes during the R00 phase. We will determine whether tension within the fibrillar ECM generated by high densities of contractile MFs spurs further MF induction. Next, we will examine the effect of high MF density on fibrillar network stiffening via ECM synthesis, and query whether this in turn also promotes MF induction. To understand the interplay between the physical surroundings of the cell, intracellular signaling, and cellular traction generation, this work will rely on biomaterial engineering, molecular biology, and finite element modeling approaches. While the applicant has significant experience in biomaterial development and has already established the synthetic fibrillar ECM to be employed in the proposed studies, he requires further training in myofibroblast biology, mechanical modeling, and the development of traction force measurements. The support and training provided by both this award and the assembled mentoring team will grant the applicant tools and expertise critical to his future independent research program. Additionally, this work will shine light on biophysical mechanisms common to fibrotic changes accompanying numerous diseases, and will provide a test bed for therapeutics that can disrupt this process.
纤维化是许多重大疾病的核心组成部分,在发达国家,估计有45%的死亡与纤维化有关。纤维化的标志包括肌成纤维细胞(MF)诱导、过度MF增殖和基质合成以及细胞外基质(ECM)的硬化或收缩,但这些变化如何相互关联和反馈以加强纤维化过程尚不清楚。这部分是因为我们缺乏对细胞如何感知、机械响应以及在纤维化期间如何改变其周围环境的结构和力学的基本理解。为了填补我们知识的空白并开发针对纤维化机制的治疗方法,我们需要实验平台,使我们能够1)准确捕获组织的纤维结构和机械行为,以及2)监测驱动MF分化,增殖和随后的纤维化硬化的机械力。拟议工作的总体重点是在MF诱导和增殖的启动(K99)和强化(R 00)期间连接细胞内和细胞外力学。在K99阶段,我们将开发一种技术来测量新建立的合成ECM中的牵引力,该ECM是纤维状的,机械可调的,并且可以由细胞重组。使用这个平台,我们将检查TGF-β是否诱导RhoA介导的原纤维重组,以增加牵引力的产生和随后的MF诱导和增殖。了解MF诱导和增殖是如何启动的,我们将继续研究增加MF细胞密度如何加强R 00期的纤维化变化。我们将确定高密度收缩性MF产生的纤维状ECM内的张力是否刺激进一步的MF诱导。接下来,我们将研究高MF密度通过ECM合成对纤维状网络硬化的影响,并询问这是否反过来也促进MF诱导。为了了解细胞的物理环境,细胞内信号传导和细胞牵引力产生之间的相互作用,这项工作将依赖于生物材料工程,分子生物学和有限元建模方法。虽然申请人在生物材料开发方面具有丰富的经验,并且已经建立了拟用于拟议研究的合成纤维状ECM,但他需要在肌成纤维细胞生物学、机械建模和牵引力测量开发方面进行进一步培训。该奖项和组建的指导团队提供的支持和培训将为申请人提供对其未来独立研究计划至关重要的工具和专业知识。此外,这项工作将揭示伴随许多疾病的纤维化变化所共有的生物物理机制,并将为可以破坏这一过程的疗法提供试验平台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brendon M Baker其他文献
Brendon M Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brendon M Baker', 18)}}的其他基金
Angiogenic hydrogel composites for microvascular integration of organoid grafts
用于类器官移植物微血管整合的血管生成水凝胶复合材料
- 批准号:
10395412 - 财政年份:2021
- 资助金额:
$ 13.04万 - 项目类别:
Angiogenic hydrogel composites for microvascular integration of organoid grafts
用于类器官移植物微血管整合的血管生成水凝胶复合材料
- 批准号:
10094422 - 财政年份:2021
- 资助金额:
$ 13.04万 - 项目类别:
Angiogenic hydrogel composites for microvascular integration of organoid grafts
用于类器官移植物微血管整合的血管生成水凝胶复合材料
- 批准号:
10570239 - 财政年份:2021
- 资助金额:
$ 13.04万 - 项目类别:
Engineered fibrillar matrices to study directed cell migration
工程纤维基质用于研究定向细胞迁移
- 批准号:
8840352 - 财政年份:2012
- 资助金额:
$ 13.04万 - 项目类别:
Engineered fibrillar matrices to study directed cell migration
工程纤维基质用于研究定向细胞迁移
- 批准号:
8469297 - 财政年份:2012
- 资助金额:
$ 13.04万 - 项目类别:
Engineered fibrillar matrices to study directed cell migration
工程纤维基质用于研究定向细胞迁移
- 批准号:
8256033 - 财政年份:2012
- 资助金额:
$ 13.04万 - 项目类别:
相似海外基金
Multi-omics analysis on carotid artery stenosis for the biological mechanism of arteriosclerosis.
颈动脉狭窄的多组学分析动脉硬化的生物学机制。
- 批准号:
23K14718 - 财政年份:2023
- 资助金额:
$ 13.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A large-scale longitudinal study of the impact of decline in masticatory function on the development of arteriosclerosis
咀嚼功能下降对动脉硬化发展影响的大规模纵向研究
- 批准号:
22K10054 - 财政年份:2022
- 资助金额:
$ 13.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Deep Learning Model to Quantify Arteriosclerosis in Donor Kidney Biopsies
量化供体肾活检中动脉硬化的深度学习模型
- 批准号:
10601825 - 财政年份:2022
- 资助金额:
$ 13.04万 - 项目类别:
Elucidation of the mechanism of benign prostatic hyperplasia and arteriosclerosis in the general population
阐明普通人群良性前列腺增生和动脉硬化的机制
- 批准号:
22K10571 - 财政年份:2022
- 资助金额:
$ 13.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of new prevention and treatment strategies for diabetes and arteriosclerosis using stretching
利用伸展运动开发糖尿病和动脉硬化的新预防和治疗策略
- 批准号:
22K11623 - 财政年份:2022
- 资助金额:
$ 13.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Suppression of arteriosclerosis with the vaccine focusing on intestinal microbiota
通过针对肠道微生物群的疫苗抑制动脉硬化
- 批准号:
22K16110 - 财政年份:2022
- 资助金额:
$ 13.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Cdc42bpg signaling in arteriosclerosis and vascular fibrosis
动脉硬化和血管纤维化中的 Cdc42bpg 信号传导
- 批准号:
10448070 - 财政年份:2022
- 资助金额:
$ 13.04万 - 项目类别:
Development of a screening method for the progression of arteriosclerosis in patients with type 2 diabetes mellitus.
开发2型糖尿病患者动脉硬化进展的筛查方法。
- 批准号:
21K17415 - 财政年份:2021
- 资助金额:
$ 13.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The establishment of the safe hormone replacement therapy that can reduce arteriosclerosis risk
建立可降低动脉硬化风险的安全激素替代疗法
- 批准号:
21K09546 - 财政年份:2021
- 资助金额:
$ 13.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Role of reactive sulfur species in vascular redox regulation and inhibition of arteriosclerosis
活性硫在血管氧化还原调节和动脉硬化抑制中的作用
- 批准号:
21K08136 - 财政年份:2021
- 资助金额:
$ 13.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)