Innovative MRI-based Characterization of Cardiac Dyssynchrony
基于 MRI 的创新心脏不同步表征
基本信息
- 批准号:8875394
- 负责人:
- 金额:$ 63.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:ApicalCardiacCardiovascular systemClinicalClinical MarkersClinical ResearchComplexDataDatabasesDiseaseEchocardiographyElectrocardiogramGoalsGuidelinesHeartHeart DiseasesHeart failureImageImaging TechniquesIndividualLeadLeft ventricular structureMachine LearningMagnetic ResonanceMagnetic Resonance ImagingMeasurementMeasuresMechanicsMethodologyMethodsModelingMotionMovementOutcomeOutputPatientsPatternResearchResolutionSelection CriteriaShapesSolutionsStructureTechniquesTechnologyTestingTimeTreatment outcomebasebiomechanical modelcardiovascular visualizationeffective therapyheart motionimprovedinnovationnovelpredictive markerpublic health relevanceresponsespatiotemporalsuccesstherapy outcometool
项目摘要
DESCRIPTION (provided by applicant): Cardiac dyssynchrony deteriorates cardiac function and often cannot be treated effectively. The goal of this proposal is to develop and provide a new analysis technique for understanding the complex cardiac motion patterns (in time and space) of patients with cardiac dyssynchrony, with the hope of improving its treatment outcomes, specifically with respect to cardiac resynchronization therapy (CRT). CRT, the most effective treatment for dyssynchrony with worsening heart failure, significantly improves outcome in only ~66% of heart failure patients selected for the treatment, which is based on ECG criteria. Selection criteria based on imaging are essential to improving the success rate. Unfortunately, response rates are not higher with selection criteria based on echocardiography, the most popular cardiac imaging technique. Cine cardiovascular magnetic resonance (CMR) has the potential to better characterize dyssynchrony, as it shows cardiac mechanics and intramural wall motion with much higher spatial resolution than echocardiography. However, quantitative assessments of CMR have been mostly limited to global volumetric measures, which ignore most of the motion information captured by the images. For example, studies of a number of distinctive motion features of dyssynchrony (such as septal flash and apical rocking) have been confined to qualitative assessment, limiting inference of their potential utility for improving CRT treatment. To accurately quantify cardiac function through CMR, we have developed biomechanical models for describing cardiac function and machine learning technology for identifying morphological and functional patterns atypical for healthy hearts. We propose to combine these two technologies to accurately quantify cardiac dyssynchrony within the Left Ventricle (LV). Specifically, our methods will extract a rich description of LV motion and
strain from the CMRs of a set of retrospectively selected subjects with synchronous or dyssynchronous LV motion. We will then use machine learning methods to identify local and global motion patterns specific to dyssynchrony. Finally, we will correlate these patterns to already existing clinical scores to find potentially predictive markers with respect to CRT outcome. We hypothesize that these markers will have a higher correlation to CRT outcome than current clinical markers alone. Identifying these markers will have the potential to further stratify the disease with respect to the expected outcome of CRT, which then can be used to derive new selection criteria that lead to higher success rates. The project will also disseminate our novel, data-driven methodology for quantifying that motion. Other research groups can apply our tools to specifically study dyssynchrony, as well as other cardiac diseases impacting LV motion in general.
描述(由申请人提供):心脏不同步使心脏功能恶化,通常无法有效治疗。该提案的目标是开发和提供一种新的分析技术,用于了解心脏不同步患者的复杂心脏运动模式(在时间和空间上),希望改善其治疗结果,特别是心脏起搏治疗(CRT)。CRT是治疗不同步性心力衰竭恶化的最有效治疗方法,根据ECG标准,仅约66%选择接受治疗的心力衰竭患者的结局得到显著改善。基于成像的选择标准对于提高成功率至关重要。不幸的是,基于超声心动图(最流行的心脏成像技术)的选择标准的应答率并不高。电影心血管磁共振(CMR)有可能更好地表征不同步,因为它显示心脏力学和壁间运动的空间分辨率比超声心动图高得多。然而,CMR的定量评估主要限于全局体积测量,其忽略了图像捕获的大部分运动信息。例如,对一些不同步的独特运动特征(如间隔闪光和心尖摇摆)的研究仅限于定性评估,限制了对它们改善CRT治疗的潜在效用的推断。为了通过CMR准确量化心脏功能,我们开发了用于描述心脏功能的生物力学模型和用于识别健康心脏非典型形态和功能模式的机器学习技术。我们建议将这两种技术联合收割机用于准确量化左心室(LV)内的心脏不同步。具体来说,我们的方法将提取LV运动的丰富描述,
一组回顾性选择的同步或不同步LV运动受试者的CMR应变。然后,我们将使用机器学习方法来识别特定于不同步的局部和全局运动模式。最后,我们将这些模式与现有的临床评分相关联,以找到CRT结局的潜在预测标志物。我们假设这些标记物与CRT结果的相关性高于当前单独的临床标记物。识别这些标志物将有可能进一步对CRT的预期结果进行疾病分层,然后可以用于导出新的选择标准,从而提高成功率。该项目还将传播我们新颖的、数据驱动的量化运动的方法。其他研究小组可以应用我们的工具来专门研究不同步,以及其他影响LV运动的心脏疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leon Axel其他文献
Leon Axel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leon Axel', 18)}}的其他基金
Sparsity-Based MRI Reconstruction of Physiologic Dimensions
基于稀疏性的生理维度 MRI 重建
- 批准号:
9125827 - 财政年份:2015
- 资助金额:
$ 63.43万 - 项目类别:
Sparsity-Based MRI Reconstruction of Physiologic Dimensions
基于稀疏性的生理维度 MRI 重建
- 批准号:
8968594 - 财政年份:2015
- 资助金额:
$ 63.43万 - 项目类别:
MRI Assessment of Patient Suitability for Cardiac Resynchronization Therapy (CRT)
MRI 评估患者是否适合心脏再同步治疗 (CRT)
- 批准号:
8916207 - 财政年份:2014
- 资助金额:
$ 63.43万 - 项目类别:
Development and Evaluation of MRI Methods to Assess Diastolic Function
评估舒张功能的 MRI 方法的开发和评估
- 批准号:
8290310 - 财政年份:2011
- 资助金额:
$ 63.43万 - 项目类别:
Development and Evaluation of MRI Methods to Assess Diastolic Function
评估舒张功能的 MRI 方法的开发和评估
- 批准号:
8093461 - 财政年份:2011
- 资助金额:
$ 63.43万 - 项目类别:
Noninvasive Assessment of Liver Stiffness with Tagged MRI
使用标记 MRI 对肝硬化进行无创评估
- 批准号:
7977979 - 财政年份:2010
- 资助金额:
$ 63.43万 - 项目类别:
Noninvasive Assessment of Liver Stiffness with Tagged MRI
使用标记 MRI 对肝硬化进行无创评估
- 批准号:
8098877 - 财政年份:2010
- 资助金额:
$ 63.43万 - 项目类别:
Quantitative Myocardial Perfusion in Assessment with MRI
MRI 评估中的定量心肌灌注
- 批准号:
7460908 - 财政年份:2006
- 资助金额:
$ 63.43万 - 项目类别:
Quantitative Myocardial Perfusion in Assessment with MRI
MRI 评估中的定量心肌灌注
- 批准号:
7279262 - 财政年份:2006
- 资助金额:
$ 63.43万 - 项目类别:
Quantitative Myocardial Perfusion in Assessment with MRI
MRI 评估中的定量心肌灌注
- 批准号:
7026023 - 财政年份:2006
- 资助金额:
$ 63.43万 - 项目类别:
相似海外基金
Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
- 批准号:
10749672 - 财政年份:2024
- 资助金额:
$ 63.43万 - 项目类别:
Towards widespread use of cardiac MRI using new affordable low magnetic field (0.55T) MRI scanner and AI
使用新型经济实惠的低磁场 (0.55T) MRI 扫描仪和 AI 实现心脏 MRI 的广泛使用
- 批准号:
2904562 - 财政年份:2024
- 资助金额:
$ 63.43万 - 项目类别:
Studentship
Targeting soluble guanylate cyclase as a novel strategy to treat and prevent cardiac arrhythmias: efficacy and mechanisms
靶向可溶性鸟苷酸环化酶作为治疗和预防心律失常的新策略:功效和机制
- 批准号:
MR/Y003594/1 - 财政年份:2024
- 资助金额:
$ 63.43万 - 项目类别:
Research Grant
Using Novel Machine Learning Methods to Personalize Strategies for Prevention of Persistent AKI after Cardiac Surgery
使用新颖的机器学习方法制定个性化策略,预防心脏手术后持续性 AKI
- 批准号:
10979324 - 财政年份:2024
- 资助金额:
$ 63.43万 - 项目类别:
Novel minimally-invasive in-situ 3D bioprinting platform for cardiac regeneration
用于心脏再生的新型微创原位3D生物打印平台
- 批准号:
EP/X027287/2 - 财政年份:2024
- 资助金额:
$ 63.43万 - 项目类别:
Fellowship
Investigating the mechanosensitive interplays between genetic control and self-organisation during the emergence of cardiac tissue curvature
研究心脏组织曲率出现过程中遗传控制和自组织之间的机械敏感性相互作用
- 批准号:
BB/Y00566X/1 - 财政年份:2024
- 资助金额:
$ 63.43万 - 项目类别:
Research Grant
Prevention of Infections in Cardiac Surgery (PICS): a cluster-randomized factorial cross-over trial
心脏手术中感染的预防 (PICS):整群随机因子交叉试验
- 批准号:
498291 - 财政年份:2023
- 资助金额:
$ 63.43万 - 项目类别:
Operating Grants
Postoperative reduction in thrombin generation in cardiac surgery: pathogenesis and evaluation
心脏手术术后凝血酶生成减少:发病机制和评估
- 批准号:
23H03001 - 财政年份:2023
- 资助金额:
$ 63.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a novel therapy for cardiac fibrosis using a cell removal vaccine
使用细胞去除疫苗开发治疗心脏纤维化的新疗法
- 批准号:
23K07504 - 财政年份:2023
- 资助金额:
$ 63.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Aging of cardiac fibroblasts and heart failure: novel heart failure treatment through regeneration and transplantation of cardiac fibroblasts
心脏成纤维细胞的衰老和心力衰竭:通过心脏成纤维细胞的再生和移植治疗心力衰竭
- 批准号:
23K07526 - 财政年份:2023
- 资助金额:
$ 63.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




