Sparsity-Based MRI Reconstruction of Physiologic Dimensions

基于稀疏性的生理维度 MRI 重建

基本信息

  • 批准号:
    9125827
  • 负责人:
  • 金额:
    $ 21.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): While magnetic resonance imaging (MRI) is clinically very valuable, current imaging methods are subject to blurring and artifacts in the presence of physiologic (e.g., respiratory and cardiac) motion, as well as of arrhythmias, thus limiting the practical application of MRI in many patients. The currently used MRI methods are also limited in their ability to study the effects of free breathing and arrhythmias on the heart. The proposed research will further develop and evaluate a new approach to imaging in the presence of physiologic motion, which parameterizes such motions with a variable that is treated as an additional "dimension" to be reconstructed. This would not be practically feasible with conventional methods, due to the additional associated data acquisition that would be required. However, with the use of sparsity-based image reconstruction methods, the high degree of correlation of the images along these additional dimensions permits good quality image reconstructions, even with heavily undersampled imaging data. We already have made successful initial implementations of this new method for 2D cine imaging and 3D MR angiography. In the proposed research, we will further improve these initial implementations, and we will extend them to include implementations of our methods for other MRI sequences, particularly fully 3D cine data acquisitions. We will evaluate the image quality achievable with these new methods in the presence of free breathing and arrhythmias, as compared with conventional clinical imaging methods, using both numerical phantom simulations and clinical cardiac function analysis in pediatric patients to test the performance. We will also evaluate the potential for extracting new kinds of functional information from these multidimensional image sets, including the effects of free breathing and arrhythmias on the heart, using analysis tools that we will be developing. If this research is successful, these new methods will provide significantly improved MR image quality in the presence of free breathing and arrhythmias, as well as providing potentially valuable new kinds of information on the function of the heart. They may also be able to be used for performing MRI in the presence of exercise, which could be useful for both cardiovascular and musculoskeletal applications, as well as in combination with other kinds of imaging, such as with integrated PET/MRI systems. This research should thus further increase the clinical utility of MR imaging for many patients.
 描述(由申请人提供):虽然磁共振成像(MRI)在临床上非常有价值,但是当前的成像方法在存在生理(例如,呼吸和心脏)运动以及心律失常,从而限制了MRI在许多患者中的实际应用。目前使用的MRI方法在研究自由呼吸和心律失常对心脏的影响方面也受到限制。拟议中的研究将进一步开发和评估一种新的方法来成像的存在下,生理运动,参数化这样的运动与一个变量,被视为一个额外的“维度”进行重建。由于需要额外的相关数据采集,这在传统方法中实际上不可行。然而,通过使用基于稀疏性的图像重建方法,图像沿着这些附加维度的高度相关性允许良好质量的图像重建,即使是严重欠采样的成像数据。我们已经成功地初步实现了这种新方法的2D电影成像和3D MR血管造影。在拟议的研究中,我们将进一步改进这些初始实现,并将其扩展到包括我们的方法用于其他MRI序列的实现,特别是全3D电影数据采集。我们将评估这些新方法在自由呼吸和心律失常的情况下与传统临床成像方法相比可实现的图像质量,使用数值体模模拟和儿科患者的临床心脏功能分析来测试性能。我们还将评估从这些多维图像集中提取新的功能信息的潜力,包括自由呼吸和心律失常对心脏的影响,使用我们将开发的分析工具。如果这项研究成功,这些新方法将在自由呼吸和心律失常的情况下提供显着改善的MR图像质量,并提供有关心脏功能的潜在有价值的新信息。它们还可以用于在运动的情况下进行MRI,这对于心血管和肌肉骨骼应用都很有用,以及与其他类型的成像结合,例如与集成的PET/MRI系统结合。因此,这项研究应该进一步增加MR成像对许多患者的临床实用性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leon Axel其他文献

Leon Axel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leon Axel', 18)}}的其他基金

Sparsity-Based MRI Reconstruction of Physiologic Dimensions
基于稀疏性的生理维度 MRI 重建
  • 批准号:
    8968594
  • 财政年份:
    2015
  • 资助金额:
    $ 21.19万
  • 项目类别:
Innovative MRI-based Characterization of Cardiac Dyssynchrony
基于 MRI 的创新心脏不同步表征
  • 批准号:
    8875394
  • 财政年份:
    2015
  • 资助金额:
    $ 21.19万
  • 项目类别:
MRI Assessment of Patient Suitability for Cardiac Resynchronization Therapy (CRT)
MRI 评估患者是否适合心脏再同步治疗 (CRT)
  • 批准号:
    8916207
  • 财政年份:
    2014
  • 资助金额:
    $ 21.19万
  • 项目类别:
Development and Evaluation of MRI Methods to Assess Diastolic Function
评估舒张功能的 MRI 方法的开发和评估
  • 批准号:
    8290310
  • 财政年份:
    2011
  • 资助金额:
    $ 21.19万
  • 项目类别:
Development and Evaluation of MRI Methods to Assess Diastolic Function
评估舒张功能的 MRI 方法的开发和评估
  • 批准号:
    8093461
  • 财政年份:
    2011
  • 资助金额:
    $ 21.19万
  • 项目类别:
Noninvasive Assessment of Liver Stiffness with Tagged MRI
使用标记 MRI 对肝硬化进行无创评估
  • 批准号:
    7977979
  • 财政年份:
    2010
  • 资助金额:
    $ 21.19万
  • 项目类别:
Noninvasive Assessment of Liver Stiffness with Tagged MRI
使用标记 MRI 对肝硬化进行无创评估
  • 批准号:
    8098877
  • 财政年份:
    2010
  • 资助金额:
    $ 21.19万
  • 项目类别:
Quantitative Myocardial Perfusion in Assessment with MRI
MRI 评估中的定量心肌灌注
  • 批准号:
    7460908
  • 财政年份:
    2006
  • 资助金额:
    $ 21.19万
  • 项目类别:
Quantitative Myocardial Perfusion in Assessment with MRI
MRI 评估中的定量心肌灌注
  • 批准号:
    7279262
  • 财政年份:
    2006
  • 资助金额:
    $ 21.19万
  • 项目类别:
Quantitative Myocardial Perfusion in Assessment with MRI
MRI 评估中的定量心肌灌注
  • 批准号:
    7026023
  • 财政年份:
    2006
  • 资助金额:
    $ 21.19万
  • 项目类别:

相似海外基金

ImproviNg rEnal outcomes following coronary angiograPhy and/or percuTaneoUs coroNary intErventions: a pragmatic, adaptive, patient-oriented randomized controlled trial
改善冠状动脉造影和/或经皮冠状动脉介入治疗后的肾脏结局:一项务实、适应性、以患者为导向的随机对照试验
  • 批准号:
    478732
  • 财政年份:
    2023
  • 资助金额:
    $ 21.19万
  • 项目类别:
    Operating Grants
SBIR Phase II: Novel size-changing, gadolinium-free contrast agent for magnetic resonance angiography
SBIR II 期:用于磁共振血管造影的新型尺寸变化、无钆造影剂
  • 批准号:
    2322379
  • 财政年份:
    2023
  • 资助金额:
    $ 21.19万
  • 项目类别:
    Cooperative Agreement
Neonatal Optical Coherence Tomography Angiography to Assess the Effects of Postnatal Exposures on Retinal Development and Predict Neurodevelopmental Outcomes
新生儿光学相干断层扫描血管造影评估产后暴露对视网膜发育的影响并预测神经发育结果
  • 批准号:
    10588086
  • 财政年份:
    2023
  • 资助金额:
    $ 21.19万
  • 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 21.19万
  • 项目类别:
Highly Accelerated Magnetic Resonance Angiography using Deep Learning
使用深度学习的高加速磁共振血管造影
  • 批准号:
    2886357
  • 财政年份:
    2023
  • 资助金额:
    $ 21.19万
  • 项目类别:
    Studentship
Development of a method to simultaneously obtain cerebral blood flow information and progression of cerebral white matter lesions using head MR angiography.
开发一种使用头部磁共振血管造影同时获取脑血流信息和脑白质病变进展的方法。
  • 批准号:
    23K14839
  • 财政年份:
    2023
  • 资助金额:
    $ 21.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a new diagnostic method for coronary artery disease using automated image analysis with postmortem coronary angiography CT
使用死后冠状动脉造影 CT 自动图像分析开发冠状动脉疾病的新诊断方法
  • 批准号:
    23K19795
  • 财政年份:
    2023
  • 资助金额:
    $ 21.19万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Novel ultrahigh speed swept source OCT angiography methods in diabetic retinopathy
糖尿病视网膜病变的新型超高速扫源 OCT 血管造影方法
  • 批准号:
    10656644
  • 财政年份:
    2023
  • 资助金额:
    $ 21.19万
  • 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
  • 批准号:
    10759721
  • 财政年份:
    2023
  • 资助金额:
    $ 21.19万
  • 项目类别:
SCH: A physics-informed machine learning approach to dynamic blood flow analysis from static subtraction computed tomographic angiography imaging
SCH:一种基于物理的机器学习方法,用于从静态减影计算机断层血管造影成像中进行动态血流分析
  • 批准号:
    2205265
  • 财政年份:
    2022
  • 资助金额:
    $ 21.19万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了